Метастазы в кости рака молочной железы: механизм развития, осложнения, современный взгляд на сочетание бисфосфонатов и лучевой терапии

Автор: Большакова Светлана Алексеевна

Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr

Рубрика: Обзоры

Статья в выпуске: 3 т.11, 2011 года.

Бесплатный доступ

В статье представлена информация относительно современного взгляда на проблемы метастазирования в кости рака молочной железы, лечения, в частности, на сочетанное использование различных режимов фракционирования лучевой терапии и препаратов из группы бисфосфонатов.

Костные метастазы, рак молочной железы, режимы фракционирования лучевой терапии, бисфосфонаты

Короткий адрес: https://sciup.org/14955262

IDR: 14955262

Список литературы Метастазы в кости рака молочной железы: механизм развития, осложнения, современный взгляд на сочетание бисфосфонатов и лучевой терапии

  • Jemal A, Siegel R, Ward E, et al. Cancer statistics.//CA Cancer J Clin 2007.V.57.P.43-66.
  • Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy.//J Mammary Gland Biol Neoplasia 2005.V.10.P.169-80.
  • Kakonen SM, Mundy GR. Mechanisms of osteolytic bone metastasis in breast carcinoma.//Cancer 2003.V.97.P.834-9.
  • Coleman RE. Skeletal complications of malignancy.//Cancer 1997.V.80.P.1588-94.
  • Roudier MP, True LD, Higano CS, et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone.//Hum Pathol 2003.V.34.P.646-53.
  • Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis.//Biochem Biophys Res Commun 2005.V.328.P.679-87.
  • Koeneman KS, Yegung F, Chung LW. Osteomimetic properties of Prostate cancer cells: a hypothesis supporting the predilection of Prostate cancer metastasis and growth in the bone environment.//Prostate 1999.V.39.P.246-61.
  • Barnes GL, Javed A, Waller SM, et al. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediated the expression of bone sialoprotein in human metastatic breast cancer cells.//Cancer Res 2003.V.63.P.2631-7.
  • Pratar J, Javed A, Languino LR, et al. The Ranx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion.//Mol Cell Biol 2005.V.25.P.8581-91.
  • Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signaling.//Nature 2003.V.425.P.577-84.
  • Dallas SL, Rosser JL, Mundy GR, et al. Proteolysis of latent transforming growth factor-β (TGF-β)-binding protein-1 osteoclasts. A cellular mechanism for release of TGF-β from bone matrix.//J Biol Chem 2002.V.277.P.21352-60.
  • Janssens K, ten Dijke P, Janssens S et al. Transforming growth factor-β1 to the bone.//Endocr rev 2005.V.26.P.743-74.
  • Elliot RL, Blode GC. Role of transforming growth factor β in human cancer.//J Clin Oncol 2005.V.23.P.2078-93.
  • Yin JJ, Selander K, Chirgwin JM, et al. TGF-β signaking blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development.//J Clin Invest 1999.V.103.P.197-206.
  • Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis.//J Clin Invest 1996.V.98.P.1544-9.
  • Powell G, Southby J, Danks J, et al. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites.//Cancer Res 1991.V.51.P.3059-61.
  • Kakonen SM, Selander KS, Chirgwin JM, et al. Transforming growth factor-β stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways.//J Biol Chem 2002.V.277.P.24571-8.
  • Hiraga T, Myoui A, Choi ME, et al. Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor-β enhances bone metastases in breast cancer.//Cancer Res 2006.V.66.P.2067-73.
  • Bendre MS, Margulies AG, Walser B, et al. Tumor-derived interleukin-8 stimulates osteilysis independent of the receptor activator of nuclear factor-kβ ligand pathways.//Cancer Res 2005.V.65.P.11001-9.
  • Singh B, Berry JA, Shoter A, et al. COX-2 induces IL-11 production in human breast cancer cells.//J Surg res 2006.V.131.P.267-75.
  • Horwood NJ, Elliott J, Martin TJ, et al. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells.//Endocrinology 1998.V.139.P.4743.
  • Morgan H, Tumber A, Hill Pa. Breast cancer cells induce osteoclast formation by stimulating host IL-11 production and downregulating granulocyte/macrophage colony-stimulating factor.//Int J Cancer 2004.V.109.P.653-06.
  • Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastases to bone.//Cancer Cell 2003.V.3.P.537-49.
  • Gehron Robey P, Boskey AL. Extracellular Matrix and Biomineralization of Bone. 5th ed. In: Favus MJ, editor. Primer on the Metabolic Bone Disease and Disoders of Mineral Metabolism.//Washington (DC): American Society for Bone and Mineral Research; 2003.P.38-46.
  • Sato M, Morii E, Komori T, et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2αA/CBFA1 and EST1 in skeletal tissues.//Oncogene 1998.V.17.P.1517-25.
  • Selvamurugan N, Kwok S, Partridge NC. Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-β1-stimulated collagenase-3 expression in human breast cancer cells.//J Biol Chem 2004.V.279.P.27764-73.
  • Brubsker KD, Vessella RL, True LD, et al Cathepsin K mRNA and protein expression in prostate cancer progression.//J Bone Miner res 2003.V.18.P.222-30.
  • Dellaisse JM, Andersen TL, Engsig MT, et al. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities.//Microsc res Tech 2003.V.61.P.504-13.
  • Dupont J, Holzenberger M. Biology of insulin-like factors in development.//Birth Defects Res Part C Embryo Today 2003.V.69.P.257-71.
  • Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology.//Int J Cancer 2003.V.107.P.873-7.
  • Asosingh K, De Raeve H, de Ridder M, et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression.//Haematologica 2005.V.90.P.810-7.
  • Harris AL. Hypoxia -a key regulatory factor in tumor growth.//Nat Rev Cancer 2002.V.2.P.38-47.
  • Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics.//Trends Mol Med 2002.V.8.P.62-7.
  • Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia-inducible factor-1 α during breast carcinogenesis.//J Natl Cancer Inst 2001.V.93.P.309-14.
  • Chen HH, Su WC, Lin PW, et al. Hypoxia-inducible factor-1α correlates with MET and metastasis in node-negative breast cancer.//Breast Cancer Res Treat 2007.V.103.P.167-75.
  • Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis.//Cancer Metastasis Rev 2004.V.23.P.293-310.
  • Garayoa M, Martinez A, Lee S, et al. Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis.//Mol Endocrinol 2000.V.14.P.1223-32.
  • Higgins DF, Biju MP, Akai Y, et al. Hypoxic induction of Ctrf is directly mediated by Hif-1.//Am J Physiol Renal Physiol 2004.V.287.P.1223-32.
  • McMahon S, Charbonneau M, Grandmont S, et al. Transforming Growth factor β1 induced hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression.//J Biol Chem 2006.V.281.P.24171-81.
  • Mooberry SL. New insights into 2-methoxyestradiol, a promising antiangiogenic and antitumor agent.//Curr Opin Oncol 2003.V.15.P.425-30.
  • Moorberry SL. Mechanism of action of 2-methoxyestradiol: new developments.//Drug Resist Updat 2003.V.6.P.355-61.
  • Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF.//Cancer Cell 2003.V.3.P.363-75.
  • Tinley TL, Leal RM, Randall-Hlubek DA, et al. Novel 2-methoxyestradiol analogues with antitumor activity.//Cancer res 2003.V.63.P.1538-49.
  • Powis G, Kirpatrick L. Hypoxia inducible factor-1α as a cancer drug target.//Mol Cancer Ther 2004.V.3.P.647-54.
  • Mellilo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy.//Mol Cancer res 2006.V.4.P.601-5.
  • Arnett T. Regulation of bone cell function by acid-base balance.//Proc Nutr Soc 2003.V.62.P.511-20.
  • Brandao-Burch A, Uttering JC, Orriss IR, et al. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization.//Calcif Tissue Int 2005.V.77.P.167-74.
  • Raghunand N, Gatenby RA, Gillies RJ. Microenvironmental and cellular consequences of altered blood flow in tumors.//Br J Radiol 2003.V.76.N.1.P.11-22.
  • Gatenby RA, Gawlinski ET, Gmitro AF, et al. Acidmediated tumor invasion: a multidisciplinary study.//Cancer Res 2006.V.66.P.5216-23.
  • Shannon AM, Bouchier-Hayes DJ, Condron CM, et al. Tumor hypoxia, chemotherapeutic resistance and hypoxia-related therapies.//Cancer Treat Rev 2003.V.29.P.297-307.
  • Webb SD, Sherratt JA, Fish RG. Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model.//Clin Exp Metastasis 1999.V.17.P.397-407.
  • Podgorski I, Linebaugh BE, Sameni M, et al. Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer.//Neoplasia 2005.V.7.P.207-23.
  • Xie K, Huang S. Regulation of cancer metastasis by stress pathways.//Clin Exp Metastasis 2003.V.20.P.31-43.
  • Shi Q, Xiong Q, Le X, et al. Regulation of interleukin-8 expression by tumor-associated stress factors.//J Interferon Cytokine res 2001.V.21.P.553-66.
  • Dvorak MM, Siddiqua A, WardDT, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones.//Proc Natl Acad Sci U S A 2004.V.101.P.5140-5.
  • Berger CE, Rathod H, Gillespie LI, et al. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium.//J Bone Miner Res 2001.V.16.P.2092-102.
  • Chattopadhyay N. Effects of calcium-sensing receptor on the secretion of parathyroid hormone-related peptide and its impact on humoral hypercalcemia of malignancy.//Am J Physiol Endocrinol Metab 2006.V.290.P.E761 -70.
  • Sanders JL, Chattopadhyay N, Kifor O, et al. Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines.//Endocrinology 2000.V.141.P.4357-64.
  • Sanders JL, Chattopadhyay N, Kifor O, et al. Ca(2+)-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab 2001.V.281.P.E1267-74.
  • VanHouten J, Dann P, McGeoch G, et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport.//J Clin Invest 2004.V.113.P.598-608.
  • Mihai R, Stevens J, McKinney C, et al. Expression of the calcium receptor in human breast cancer -a potential new marker predicting the risk of bone metastases.//Eur J Surg Oncol 2006.V.32.P.511-5.
  • Rogers MJ, Gordon S, Benford HL, et al. Cellular and molecular mechanisms of action of bisphosponates.//Cancer 2000.V88.N.12.P.2961-2978.
  • Lin JH. Bisphosphonates: A review of their pharmacokinetic properties.//Bone 1996.V.18.P.75-85.
  • Hughes DE. Wright KR, Uy HL, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo.//J Bone Miner res 1995.V.10.P.1478-1487.
  • Sato M. Grasser W, Endo N, et al. Bisphosphonate action. Alendronate localization in rat bone and affects on osteoclast ultra-structure.//J Clin invest 1991.V.88.P.2095-2105.
  • Miller SC, Jee WS. The effect of dichloromethylene diphosphonate, a pyrophosphate analog, on bone and bone cell structure in the growing rat.//Anat Rec 1979.V.193.P.439-462.
  • Murakami H, Takahashi N, Sasaki T, et al. F possible mechanism of the specific action of bisphosphonates on osteoclasts: tiludronate preferentially affects polarized oasteoclasts having ruffled borders.//Bone 1995.V.17.P.137-144.
  • Hiroi-Furuya E, Kameda R, Hiura K, et al. Etidronate (EHDP) inhibits osteoclastic-bone resorption, promotes apoptosis and disrupts actin rings in isolatemature osteoclasts.//Calcif Tissue Int 1999.V.64.P.219-223.
  • Miller SC, Jeee WS, Kimmel DB, et al. Ethane-1-hydroxy-1. 1-diphosphonate (EHDP) effects on incorporation and accumulation of osteoclast nuclei.//Calcif Tissue Res 1977.V.22.P.243-252.
  • Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy.//N Engl J Med 2009.V.360.P.53-62.
  • Halasy-Nagy JM, Rodan GA, Reszka AA. Inhibition of Bone resorbtion by aledronate and risedronate does not require osteoclast apoptosis.//Bone 2001.V.29.P.553-559.
  • Van Beek E, Pieterman E, Cohen L, et al. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates.//Biochem Biophys Res Commun 1999.V.264.P.108-111.
  • Bergstorm JD, Bostedor RG, Masarachia PJ, et al. Aledronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.//Arch Biochem Biophys 2000.V,373.P.231-241.
  • Dunford JE, Thompson K, Coxon FP, et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates.//J Pharm Exp Ther 2001.V.296.P.235-242.
  • Dunford JE, Kwaasi A, Rogers MJ, et al. Structure-activity relationships among the nitrogen-containing bisphosphonates in clinical use and other analogues: time-dependent inhibition of human farnesyl pyrophosphate synthase.//J Med Chem 2008.V.51.P.2187-2195.
  • Pavlakis N, Schmidt R, Stockler M. Bisphosphonates for breast cancer.//Cochrane Database Syst Rev 2005.V.3.P.CD003474.
  • Hortobagyi GN, Theriault RL, Porter L, et al. for the Protocol 19 Aredia Breast Cancer Study Group. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases.//N Engl J Med 1996.V.335.N.24.P.1785-1791.
  • Theriault RL, Lipton A, Hortobagyi GN et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group.//J Clin Oncol. 1999.V.17.N.3.P.846-854.
  • Hortobagyi GN, Theriault RL. Porter L, et al. for the Protocol 19 Aredia Breast Cancer Study Group. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases.//Oncol. 1998.V.16.N.6.P.2038-2044.
  • Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials.//Cancer. 2000.V.88.N.5.P.1082-1090.
  • Kohno N, Aogi K, Minami H, et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial.//J Clin Oncol. 2005.V.23.N.15.P.3314-3321.
  • Rosen LS, Gordon D, Kaminski M, et al. Zolendronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial.//Cancer J 2001.V.7.N.5.P.377-387.
  • Rosen LS, Gordon D, Kaminski M, et al. Long-term efficacy and safety of zolendronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial.//Cancer. 2003.V.98.N.8.P.1735-1744.
  • Rosen LS, Gordon DH, Dugan Wjr, et al. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion.//Cancer. 2004.V.100.N.1.P.36-43.
  • Carteni G, Bordonaro R, Giotta F, et al. Efficacy and safety of zolendronic acid in patients with breast cancer metastatic to bone: a multicenter clinical trial.//Oncologist. 2006.V.11.N.7.P.841-848.
  • Paterson AH, Powles TJ, Kamis JA, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer.//J Clin Oncol 1993.V.11.N.1.P.59-65.
  • Kristensen B, Ejlertsen B, Groenvold M, et al. Oral clodronate in breast cancer patients with bone metastases: a randomized study.//J Intern Med. 1999.V.246.N.1.P.67-74.
  • Hilner BE, Ingle JN, Chlebowski RT, et al. American Society of Clinical Oncology 2003 update on the role of bisphosphonares and bone health issues in women with breast cancer.//J Clin Oncol 2003.V.21.N.21.P.4042-4057.
  • The NCCN Breast Cancer Clinical Practice Guidelines in Oncolgy (Version 2.2008).//©2008 National Comprehensive Cancer Network, Inc. Available at: http://www.nccn.org. Accessed July 14,2008.
  • Djubegovic B, Wheatley K, Ross J, et al. Bisphosphonartes in multiple myeloma.//Cochrane Database Syst Rev. 2002.V.3.P.CD033188.
  • Yuen KK, Shelley M, Sze WM, et al. Bisphosphonates for advanced prostate cancer.//Cochrane Database Syst Rev 2006.V4.CD006250.
  • Machado M, Cruz LS, Tannus G, et al. Efficacy of clodronate, pamidronate, and zoledronate in reducing morbidity and mortality in cancer patients with bone metastases: a meta-analysis of randomized clinical trials.//Clin Ther. 2009.V.31.P.962-979.
  • Coleman RE. Adjuvant bisphosphonates in breast cancer: are we witnessing the emergence of a new therapeutic strategy.//Eur J Cancer. 2009.V.45.P.1909-1915.
  • Lipton A. Emerging role of bisphosphonates in the clinic 0 antitumor activity and prevention of metastases to bone.//Cancer Treat Rev. 2008.V.34.P.S25-S30.
  • Jagdev SP, Coleman Re, Shipman CM, et al. The bisphosphonate, zolendronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel.//Br J Cancer. 2001.V.84.P.1126-1134.
  • Magnetto S, Boissier S, Delmas P, et al. Additive antitumor activities of taxoids in combination with the bisphosphonate ibandronate against invasion and adhesion of human breast carcinoma cells to bone.//Int J Cancer. 1999.V.83.P.263-269.
  • Ottwell PD, Mönkkönen H, Jones M, et al. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer.//J Natl Cancer Inst. 2008.V.100.P.1167-1178.
  • Neville-Webbe HL, Rostami-Hodjegan A, Evans CA, et al. Sequence-and schedule-dependent enhancement of zolendronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells.//Int J Cancer. 2005.V.113.P.364-371.
  • Maerevoet M, Martin C, Duck L. Osteonecrosis of the jaw and bisphosphonates.//N Engl J Med. 2005.V.353.P.99-102.
  • Adami S, Bhalla AK, Dorizzi R, et al. The acute phase response after bisphosphonate administration.//Calcif Tissue Int 1987.V.41.P.326-331.
  • Schweitzer DH, Oostendorp-Van de Ruit M, Van der Pluijm G, et al. Interleukin-6 and the acute phase response during treatment of patients with Paget's disease with nitrogen-containing bisphosphonate dimethylaminohydroxypropylidene bisphosphonate.//J Bone Miner Res. 1995.V.10.P.956-962.
  • Sauty A, Pechherstorfer M, Zimmer-Roth I, et al. Interleukin-6 and tumor necrosis factor alpha levels after bisphosphonates treatment in vitro and in patients with malignancy.//Bone. 1996.V.18.P.133-139.
  • Thiebaud D, Sauty A, Burckhardt P, et al. An in vitro and in vivo study of cytokines in the acute-phase response associated with bisphosphonates.//Calcif Tissue Int. 1997.V.61.P.386-392.
  • Mercadante S. Malignant bone pain: pathophysiology and treatment.//1997.V.69.P.1-18.
  • Hoskin PJ. Bisphosphonates and radiation therapy for palliation of metastatic bone disease.//Cancer Treat rev 2003.V.29.P.321-327.
  • Vassilios V, Bruland Q, Janjan N, et al. Combining systemic bisphosphonates with palliative external beam radiotherapy or bone-targeted radionuclide therapy: Interactions and effectiveness.//Clin Oncol. 2009.V.21.P.665-667.
  • Nielsen OS, Bentzen SM, Sandberg E, et al. Randomized trial of single dose versus fractionated palliative radiotherapy of bone metastases.//Radiother Oncol 1998.V.47.P.233-240.
  • Chow E, Wu J, Hoskin P, et al. International consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases.//Radiother Oncol. 2002.V.64.P.275-280.
  • Li KK, Hadi S, Kirou-Mauro A, et al. When should we define the response rates in the treatment of bone metastases by palliative radiotherapy?//Clin Oncol 2008.V.20.P.83-89.
  • Gaze MN, Kelly CG, Kerr GR, et al. Pain relief and quality of life following radiotherapy for bone metastases: A randomized trial of two fractionation schedules.//Radiother Oncol 1997.V.45.P.109-116.
  • Chow E, Hird A, Velikova G, et al. The European Organisation for Research and Treatment of Cancer Quality of Life Questionnarie for patients with bone metastases: the EORTC QLQ-BM22.//Eur J Cancer.2009.V.45.P.1146-1152.
  • Steel GG. The radiobiology of tumors.//In Basic Clinic Radiobiology. 2002. 3rd Edn. Ed GG Steel. Arnold
  • Body JJ, Diel IJ, Bell R, et al. Oral ibandronste improves bone pain and preserves quality of life on patients with skeletal metastases due to breast cancer.//2004.V.111.P.306-312.
  • Bonarigo BC, Rubin P. Nonunion of pathological fracture after radiation therapy.//Radiology. 1967.V.88.P.889-898.
  • Greenberg EJ, Chu F, Dwyer AJ, et al. Effects of radiation therapy on bone lesions as measured by 47Ca and 85Sr local kinetics.//J Nucl Med. 1972. V13.P747-751.
  • Reiden K, Kobet B, Mende U, et al. Strahlentherapie pathologischer frackturen and frakkurge fahrdeter slelettlasionen.//Strahlentherapie und Onkologie. 1986.V.162.P.742-749.
  • Hideyuki Harada, Hirohisa Katagiri, Minoru Kamata, et al. Radiological response and clinical outcome in patients with femoral bone metastases after radiotherapy.//J Radiat Res 2010.V.51.P.131-136.
  • Mirels H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathological fractures.//Clin Orthop. 1989.V.249.P.256-264.
  • Clezardin P, Ebetino FH, Fournier PGJ. Bisphosphonates and cancer-induced bone disease: Beyond their anturesorptive activity.//Cancer Res. 2005.V.65.P.4971-4974.
  • Koswig S, Budach V. Remineralization and pain relief in bone metastases after different radiotherapy fractions (10 times 3Gy vs 1 time 8Gy). A prospective study.//Strahlenther Onkol. 1999.V.175.P.500-508.
  • Markis A, Kunkler IH. Controversies in the management of metastatic spinal cord compression.//Clin Oncol 1995.V.68.P.175-180.
  • Hoskin PJ, Grover A, Bhana R, Metastatic spinal cord compression: radiotherapy outcome and dose fractionation.//Radiother Oncol 2003.V.68.P,.175-180.
  • Patchell RA, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomized trial.//Lancet 2005.V.366.P.643-648.
  • Helweg-Larsen S, Sørensen PS, Kreiner S, et al. Prognostic factors in metastatic spinal cord compression: a prospective study using multivariate analysis of variables influencing survival and gait function in 153 patients.//Int J Radiat Oncol Biol Phys 2000.V.46.P.1163-1169.
  • Важенин АВ. Радиационная онкология: организация, тактика, пути развития.//М., Издательство РАМН, 2003, 236с.
  • Нивинская ММ, Ратнер ТГ, Бальтер СА. Паллиативная лучевая терапия метастазов злокачественных опухолей в кости с использованием крупного фракционирования дозы. («Концентрированное облучение»).//Методические рекомендации. М., 1979,23с.
  • Ратнер ТГ, Монзуль ГД, Куликов ЛА, Сахаровская ВГ. Дозиметрическое обоснование среднего фракционирования при облучении костных метастазов рака молочной железы.//Медицинская радиология. 1983,3,с.11-14.
  • Blitzer PH. Reanalysis of the RTOG study of the palliation of symptomatic osseous metastases.//Cnacer.1985.V.55.P.1468-1472.
  • Braendengen M, Bruland OS, Olsen DR. Radiotherapy of skeletal metastases.//Tidsskr.Nor.Laegeforen. 2000.V.20.N.120.P.1870-1874.
  • Faulkmer U, Jarhult J, Wersall P, et al. A systemic overview of radiation therapy effects in skeletal metastases.//Acts Oncol.2003.V.42.N.5-6.P.620-633.
  • Gillick LS, Goldberg S. Technical report No185R Final Analysis RTOG Protocol No. 74-02.//Boston: Department of Biostatistics, Sidney Farber Cancer Institute; 1981.
  • Janjan N. Bone metastases: approaches to management.//Semin Oncol. 2001.V.28.N.11.P.28-34.
  • Lievens Y, Kesteloot K, Rijnders A, et al. Differences in palliative radiotherapy for bone metastases within Western European countries.//Radiother. Oncol. 2000.V.56.P.297-303.
  • Niewald M, Tkocz H, Abel U, et al. Rapid course radiation therapy vs more standard treatment: A randomized trial for bone metastases.//Int J Radiat Oncol Biol Phys. 1996.V.36.P.1085-1089.
  • Palliative irradiation. In: Moss? Radiation Oncology. Rationale, Techidue, results. Ed. Cox JD., Mosby-Year Book, Inc. 1994.P.389-392.
  • Ratanatharathorn V, Powers WE, Moss WTInt. J Rad Oncol Biol Phys. 1999.V.44.N.1.P.1-18.
  • Saarto T, Janes R, Tenhuneen M, et al. Palliative radiotherapy in the treatment of skeletal metastases.//Eur J Pain 2002.V.6.N.5.P.323-330.
  • Saarkar SK, Saarkar S, Pahari B, et al. Multiple and single palliative radiotherapy in bone second aeries -a prospective study.//Int J Radiol Imag. 2002.V.12.N.2.P.281-284.
  • Vardprogram for vuxna patienter med skelettmetastaser.//Onkologiskt Centrum. Lund 2003.P.45.
  • Кутателадзе ТО. Метастатические опухоли костей (современные методы диагностики, лечения и прогноз).//Диссертация на соискание ученой степени доктора медицинских наук. М.1991.с.47.
  • Волкова МА, Монзуль ГД, Папилян НП, Липович ММ. Дистанционная гамма-терапия в комплексном лечении костных метастазов рака молочной железы.//Медицинская радиология. 1979,6,с.23-28.
  • Хмелевский ЕВ, Боженко ВК, Паньшин ГА. И др. Факторы прогноза эффективности лучевой терапии метастатических поражений скелета.//Российский онкологический журнал. 2006, V4, с. 16-19.
  • Chow E, Harris K, Fan G, et al. Palliative radiotherapy trials for bone metastases: A systemic review.//J Clin Oncol 2007.V.25.P.1423-1436.
  • McQuay H, Carroll D, Moore RA. Radiotherapy for painful bone metastases: a systemic review.//Clin Oncol 1997.V.9.P.150-154.
  • WU JS-Y, Wong R, Johnston M, et al. Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases.//Int J Radiat Oncol Biol Phys. 2003.V.55.P.594-605.
  • Sze W-M, Shelley MD, Held I, et al. Palliation of metastatic bone pain: a single fraction versus multifraction radiotherapy d a systemic review of randomized trials.//Clin Oncol 2003.V.15.P.345-352.
  • Steenland E, Leer JW, van Houwelingen H, et al. The effect of a single fraction compared to multiple fractions on painful bone metastases: a global analysis of the Dutch Bone Metastasis Study.//Radiother Oncol. 1999.V.52.P.101-109.
  • Price P, Hoskin PJ, Easton D, et al. Prospective randomized trial of single and multifraction radiotherapy schedules in the treatment of painful bone metastases.//Radiother Oncol. 1986.V.6.P.247-255.
  • Cole DJ. A randomized trial of a single treatment versus conventional fractionation in the palliative radiotherapy of painful bone metastases.//Clin Oncol 1989.V.1.P.59-62.
  • Kagei K, Suzuki K, Shirato H, et al. A randomized trial of single and multifraction radiation therapy for bone metastasis: A preliminary report.//Gan No Rinsho. 1990.V.36 P 2553-2558.
  • Foro P, Algara M, Reig A, et al. Randomized prospective trial comparing three schedules of palliative radiotherapy: Preliminary results.//Oncologia 1998.V.21.P.55-60.
  • Bone Pain Trial Working Party: 8 Gy single fraction radiotherapy foe the treatment of metastatic skeletal pain: Randomized comparison with a multifraction schedule over 12 months of patients follow-up. Bone Pain trial Working Party.//Radiother Oncol 1999.V.52.P.111-121.
  • Koswig S, Budach V. Recalcification and pain relief following radiothyerapy of bone metastases: A randomized trial of 2 different fractionation schedules (10 x 3 Gy vs. 1 x 8 Gy).//Strahlenther Onkol 1999.V.175.P.500-508.
  • Kirkbride P, Warde P, Panzarella A, et al. A randomized trial comparing the efficacy of single fraction radiation therapy plus ondansetron with fractionated radiation therapy in the palliation of skeletal metastases.//2000.V.48.N.3.P.185.
  • Ozsaran Z, Yalman D, Anacek Y, et. al. Palliative radiotherapy of bone metastases: Results of the randomized trial comparing three fractionation schedules.//Journal of BUON. 2001.V.6.P.43-48.
  • Altundağ MB, Ŭçer AR, Çalikoğlu T, et al. Single (500 cGy, 800 cGy) and multifraction (300 x 10cGy) radiotherapy schedules in the treatment of painful bone metasdtases.//Turkish Journal Hematology-Oncology. 2002.V.12.P.16-21.
  • Badzio A, Senkus-Konefka E, Jereczek-Fossa BA, et al. 20 Gy in five fractions versus 8 Gy in one fraction in palliative radiotherapy of bone metastases. A multicenter randomized study.//Journal of Oncology. 2003.V.53.P.261-264.
  • van der Linden YM, Lok JJ, Steenland E, et al. Single fraction radiotherapy is efficacious: A further analysis Dutch Bone Metastasis Study controlling for the influence of retreatment.//Int J radiat Oncol Biol Phys. 2004.V.59.P.528-537.
  • Hartsell WF, Scott Cb, Watkins Bruner D, et al. Randomized trial of short versus long-course radiotherapy for palliation of painful bone metastases.//J natl Cancer Inst. 2005.V.97.P.798-804.
  • Roos DE, Turner SL, O'Brien PC, et al. Randomized trial of 8 Gy in 1 versus 20 Gy in 5 fractions of radiotherapy foe neuropathic pain due to bone metastases (Trans-Tasman Radiation Oncology Group, TROG 96.05).//Radiother Oncol. 2005.V.75.P.54-63.
  • Kaasa S, Brenne E, Lund J, et al. Prospective randomized multicenter trial on single fraction radiotherapy (8 Gy x 1) versus multiple fractions (3 Gy x 10) in the treatment of painful bone metastases: Phase III randomized trial.//Radiother Oncol. 2006.V.79.P.278-284.
  • Haddad P, Behrouzi H, Amouzegar-Hashemi F, et al. Single versus multiple fractions of palliative radiotherapy for bone metastases: A randomized clinical trial in Iranian patients.//Radiother Oncol 2006.V.80.P.65 (abstr 223).
  • Wu JSY, Wong R, Johnson M, et al. Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases.//Int J Radiat Oncol Biol Phys 2003.V.55.P.594-605.
  • Shakespeare TP, Thiagarajan A, Gebski V, et al. Evaluation of the quality of radiotherapy randomized trials for painful bone metastases.//Cancer. 2005.V.103.P.1976-1981.
  • Khan KS, Daya S, Jadad AR. The importance of quality of primary studies in producing unbiased systematic reviews.//Arch Intern Med. 1996.V.156.P.661-666.
  • Glastein E. Letters to the editor: In response to Drs Arriagada and Pignon.//Int J Radiat Oncol Biol Phys. 2002.V.52.P.1141-1142.
  • van der Hout WB, van der Linder YM, et al. Single-versus multiple-fraction radiotherapy in patients with painful bone metastases: Cost-utility analysis based on a randomized trial.//J Natl Cancer Inst. 2003.V.95.P.222-229.
  • Radesw D, Stalpers LJA, Hulshof MC, et al. Comparison of 1 x 8 Gy and 10 x 3 Gy for functionaloutcome in patients with metastatic spinal cord compression.//Int J Radiat Oncol Biol Phys. 2005.V.62.P.514-518.
  • Vassiliou V, Kalogeropoulou C, Christopoulos C, et al. Combination ibandronate and radiotherapy for the treatment of bone metastases: clinical evaluation and radiologic assessment.//Int J Radiat Oncol Biol Phys. 2007.V.67.P.264-272.
  • Tong D, Gillick L, Hendrickson FR. The palliation of symptomatic osseous metastases: Final results of the Study by the Radiation Therapy Oncology Group.//Cancer. 1982.V.50.P.893-899.
  • Body JJ, Diel IJ, Lichinitser MR, et al. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases.//Ann Oncol. 2003.V.14.P.1399-1405.
  • Body JJ, Diel IJ, Bell R, et al. Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer.//Pain. 2004.V.111.P.306-312.
  • Diel IJ, Body JJ, Lichinitser MR, et al. Imprived quality of life after long-term treatment with the bisphosphonate ibandronate in patients with metastatic bone disease due to breast cancer.//Eur J Cancer. 2004.V.40.P.1704-1712.
  • Micke O, Berning D, Schaefer U, et al. Combination of ibandronate and radiotherapy in metastatic bone disease -results of a randomized study. [Abstract].//2003.N.22.P.759.
  • Kouloulias VE, Dardoufas CE, Kouvaris JR, et al. Use of image processing techniques to assess effect of disodium pamidronate in conjunction with radiotherapy in patients with bone metastases.//Acta Oncol 2002.V.41.P.169-174.
  • Kouloulias VE, Kouvaris RJ, Antypas C, et al. An intra-patient dose-escalation study of disodium pamidronate plus radiotherapy versus radiotherapy alone for the treatment of osteolytic metastases. Monitoring of recalcification using image-processing techniques.//Strahlenther Onkol 2003.V.179.P.471-479.
  • Kouloulias VE, Matsopoulos G, Kouvaris RJ, et al. Radiotherapy in conjunction with intravenous infusion of 180 mg of disodium pamidronate in management of osteolytic metastases from breast cancer: Clinical evaluation, biochemical markers, quality of life, and monitoring of recalcification using assessment of grey-level histogram in plain radiographs.//Int J Radiat Oncol Biol Phys. 2003.V.57.P.143-157.
Еще
Статья обзорная