Цитокиновый статус сыворотки крови больных раком яичников с различным уровнем циркулирующих опухолевых клеток

Автор: Генинг Снежанна Олеговна, Абакумова Татьяна Владимировна, Антонеева Инна Ивановна, Гафурбаева Дина Урхановна, Мифтахова Регина Ривкатовна, Долгова Динара Ришатовна, Песков Андрей Борисович

Журнал: Ульяновский медико-биологический журнал @medbio-ulsu

Рубрика: Клиническая медицина

Статья в выпуске: 4, 2019 года.

Бесплатный доступ

Циркулирующие опухолевые клетки (ЦОК) представляют собой основу гематогенного метастазирования. В 2003 г. было продемонстрировано их существование в крови больных раком яичников (РЯ). Известно, что воспаление играет важную роль в прогрессировании опухолей. В крови ЦОК встречаются с большим количеством компонентов, в т.ч. с цитокинами, которые способны модулировать метастатический потенциал опухолевой клетки. Целью данного исследования была оценка цитокинового статуса сыворотки крови больных раком яичников с различным уровнем циркулирующих опухолевых клеток. Материалы и методы. Объектом исследования явились первичные больные с верифицированным (гистологически либо цитологически) раком яичников II-IV степеней по FIGO (n=24) до лечения. В крови пациенток определяли число циркулирующих опухолевых клеток методом проточной цитофлюориметрии и уровни IL-6, IL-17A, IL-1ft, TGF-a, IL-4, VEGF, TNF-a, HGF, IL-18, IL-10, IL-8. Обработку результатов проводили с использованием пакета программ Statistica Windows...

Еще

Рак яичников, цитокины, циркулирующие опухолевые клетки

Короткий адрес: https://readera.org/14116402

IDR: 14116402   |   DOI: 10.34014/2227-1848-2019-4-50-62

Список литературы Цитокиновый статус сыворотки крови больных раком яичников с различным уровнем циркулирующих опухолевых клеток

  • Judson P.L., Geller M.A., Bliss R.L., Boente M.P., Downs L.S., Argenta P.A. Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecologic oncology. 2003; 91 (2): 389-394.
  • Pearl M.L., Zhao Q., Yang J., Dong H., Tulley S., Zhang Q. Prognostic analysis of invasive circulating tumor cells (iCTCs) in epithelial ovarian cancer. Gynecologic oncology. 2014; 134 (3): 581-590.
  • Micalizzi D.S., Maheswaran S., Haber D.A. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 2017; 31 (18): 1827-1840.
  • Aceto N., Bardia A., Miyamoto D.T. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. cell. 2014; 158 (5): 1110-1122.
  • Klein C.A. Framework models of tumor dormancy from patient-derived observations. Current Opinion in Genetics & Development. 2011; 21 (1): 42-49.
  • Bonnomet A., Syne L., Brysse A. A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. 2012; 31 (33): 3741-3753.
  • Kim M.Y., Oskarsson T., Acharyya S., Nguyen D.X., Zhang X.H., Norton L., Massague J. Tumor self-seeding by circulating cancer cells. cell. 2009; 139 (7): 1315-1326.
  • Skovierova H., Okajcekova T., Strnadel J., Vidomanova E., Halasova E. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int. J. Mol. Med. 2018; 41 (3): 1187-1200.
  • Moffitt L., Karimnia N., Stephens A., Bilandzic M. Therapeutic Targeting of Collective Invasion in Ovarian Cancer. Int. J. Mol. Sci. 2019; 20 (6): 1466.
  • Hudson L.G., Zeineldin R., Stack M.S. Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin. Exp. Metastasis. 2008; 25 (6): 643-655.
  • Blassl C., Kuhlmann J.D., Webers A., Wimberger P., Fehm T., Neubauer H. Gene expression profiling of single circulating tumor cells in ovarian cancer - Establishment of a multi-marker gene panel. Mol. Oncol. 2016; 10 (7): 1030-1042.
  • Strauss R., Li Z.Y., Liu Y. Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity [published correction appears in PLoS One. 2011; 6 (2)]. PLoS One. 2011; 6 (1): e16186.
  • Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Ann. Rev. Immunol. 2012; 30: 677-706.
  • Klymenko Y., Nephew K.P. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel). 2018; 10 (9): 295.
  • Li Y.C., Zou J.M., Luo C., Shu Y., Luo J., Qin J., Wang Y., Li D., Wang S.S., Chi G., Guo F., Zhang G.M., Feng Z.H. Circulating tumor cells promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammation. Oncotarget. 2017; 8 (17): 28418-28430.
  • Ning Y., Cui Y., Li X., Cao X., Chen A., Xu C., Cao J., Luo X. Co-culture of ovarian cancer stem-like cells with macrophages induced SKOV3 cells stemness via IL-8/STAT3 signaling. Biomed. Pharmacother. 2018; 103: 262-271.
  • Yung M.M., Tang H. W., Cai P.C. GRO-a and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFkB signaling cascade. Theranostics. 2018; 8 (5): 1270-1285.
  • House C.D., Jordan E., Hernandez L. NFkB Promotes Ovarian Tumorigenesis via Classical Pathways That Support Proliferative Cancer Cells and Alternative Pathways That Support ALDH+ Cancer Stemlike Cells. Cancer Res. 2017; 77 (24): 6927-6940.
  • Zhai J., Shen J., Xie G., Wu J., He M., Gao L., Zhang Y., Yao X., Shen L. Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer. Cancer Lett. 2019; 454: 37-43.
  • Wang Y., Li L., Guo X., Jin X., Sun W., Zhang X., Xu R.C. Interleukin-6 signaling regulates anchorage-independent growth, proliferation, adhesion and invasion in human ovarian cancer cells. Cytokine. 2012; 59 (2): 228-36.
  • Stronach E.A., Cunnea P., Turner C. The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma. Oncotarget. 2015; 6 (31): 31593-31603.
  • Sanguinete M.M.M., Oliveira P.H., Martins-Filho A., Micheli D.C., Tavares-Murta B.M., Murta E.F.C., Nomelini R.S. Serum IL-6 and IL-8 Correlate with Prognostic Factors in Ovarian Cancer. Immunol. Invest. 2017; 46 (7): 677-688.
  • Huh S.J., Liang S., Sharma A., Dong C., Robertson G.P. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010; 70 (14): 6071-6082.
  • Lohmann A.E., Dowling R.J.O., Ennis M., Amir E., Elser C., Brezden-Masley C., Vandenberg T., Lee E., Fazaee K., Stambolic V., Goodwin P.J., Chang M.C. Association of Metabolic, Inflammatory, and Tumor Markers With Circulating Tumor Cells in Metastatic Breast Cancer. JNCI Cancer Spectr. 2018; 2 (2): pky028.
  • Konig A., Vilsmaier T., Rack B., Friese K., Janni W., Jeschke U., Andergassen U., Trapp E., Juckstock J., Jdger B., Alunni-Fabbroni M., Friedl T., Weissenbacher T., Success Study Group. Determination of Interleukin-4, -5, -6, -8 and -13 in Serum of Patients with Breast Cancer Before Treatment and its Correlation to Circulating Tumor Cells. Anticancer Res. 2016; 36 (6): 3123-3130.
  • Kwon Y., Godwin A.K. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer. Reprod. Sci. 2017; 24 (4): 494-501.
  • Dorayappan K.D.P., Gardner M.L., Hisey C.L., Zingarelli R.A., Smith B.Q., Lightfoot M.D.S., Gogna R., Flannery M.M., Hays J., Hansford D.J., Freitas M.A., Yu L., Cohn D.E., Selvendiran K. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res. 2019; 79 (13): 3503-3513.
  • Спирина Л.В., Кондакова И.В., Клишо Е.В., Какурина Г.В., Шишкин Д.А. Металлопротеиназы как регуляторы неоангиогенеза в злокачественных новообразованиях. Сибирский онкологический журнал. 2007; 1: 67-71.
  • Yasuda K., Nakanishi K., Tsutsui H. Interleukin-18 in Health and Disease. Int. J. Mol. Sci. 2019; 20 (3): 649.
  • Carbotti G., Barisione G., Orengo A.M., Brizzolara A., Airoldi I., Bagnoli M., Pinciroli P., Mezzanzanica D., Centurioni M.G., Fabbi M., Ferrini S. The IL-18 antagonist IL-18-binding protein is produced in the human ovarian cancer microenvironment. Clin. Cancer Res. 2013; 19 (17): 4611-4620.
  • Orengo A.M., Fabbi M., Miglietta L., Andreani C., Bruzzone M., Puppo A., Cristoforoni P., Centurioni M.G., Gualco M., Salvi S., Boccardo S., Truini M., Piazza T., Canevari S., Mezzanzanica D., Ferrini S. Interleukin (IL)-18, a biomarker of human ovarian carcinoma, is predominantly released as biologically inactive precursor. Int. J. Cancer. 2011; 129 (5): 1116-1125.
  • loana Braicu E., Mustea A., Toliat M.R., Pirvulescu C., Konsgen D., Sun P., Nurnberg P., Lichtenegger W., Sehouli J. Polymorphism of IL-1alpha, IL-1beta and IL-10 in patients with advanced ovarian cancer: results of a prospective study with 147 patients. Gynecol. Oncol. 2007; 104 (3): 680-685.
  • Takaishi K., Komohara Y., Tashiro H., Ohtake H., Nakagawa T., Katabuchi H., Takeya M. Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci. 2010; 101 (10): 2128-2136.
  • Szczerba B.M., Castro-Giner F., Vetter M., Krol I., Gkountela S., Landin J., Scheidmann M.C., Donato C., Scherrer R., Singer J., Beisel C., Kurzeder C., Heinzelmann-Schwarz V., Rochlitz C., Weber W.P., Beerenwinkel N., Aceto N. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019; 566 (7745): 553-557.
  • Lau T.S., Chan L.K., Wong E.C., Hui C. W., Sneddon K., Cheung T.H., Yim S.F., Lee J.H., Yeung C.S., Chung T.K., Kwong J. A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFa-TGFa-EGFR. Oncogene. 2017; 36 (25): 3576-3587.
  • Szlosarek P.W., Grimshaw M.J., Kulbe H., Wilson J.L., Wilbanks G.D., Burke F., Balkwill F.R. Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Mol. Cancer Ther. 2006; 5: 382-390.
  • Piura B., Medina L., Rabinovich A., Dyomin V., Levy R.S., Huleihel M. Distinct expression and localization of TNF system in ovarian carcinoma tissues: possible involvement of TNF-alpha in morphological changes of ovarian cancerous cells. Anticancer Res. 2014; 34: 745-752.
  • Kulbe H., Thompson R., Wilson J.L. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 2007; 67 (2): 585-592.
  • Geng Y., Chandrasekaran S., Hsu J. W., Gidwani M., Hughes A.D., King M.R. Phenotypic switch in blood: effects of pro-inflammatory cytokines on breast cancer cell aggregation and adhesion. PLoS One. 2013; 8 (1): e54959.
  • Reymond N., d'Agua B.B., Ridley A.J. Crossing the endothelial barrier during metastasis. Nature Reviews Cancer. 2013; 13 (12): 858-870.
  • Evani S.J., Prabhu R.G., Gnanaruban V., Finol E.A., Ramasubramanian A.K. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J. 2013; 27 (8): 3017-3029.
  • Trabert B., Pinto L., Hartge P., Kemp T., Black A., Sherman M.E., Brinton LA., Pfeiffer R.M., Shiels M.S., Chaturvedi A.K., Hildesheim A., Wentzensen N. Pre-diagnostic serum levels of inflammation markers and risk of ovarian cancer in the prostate, lung, colorectal and ovarian cancer (PLCO) screening trial. Gynecol. Oncol. 2014; 135 (2): 297-304.
  • Elizabeth M. Poole, I-Min Lee, Paul M. Ridker, Julie E. Buring, Susan E. Hankinson, Shelley S. Tworoger. A Prospective Study of Circulating C-Reactive Protein, Interleukin-6, and Tumor Necrosis Factor a Receptor 2 Levels and Risk of Ovarian Cancer. Am. J. Epidemiol. 2013; 178 (8): 1256-1264.
  • Treffers L.W., Hiemstra I.H., Kuijpers T.W., van den Berg T.K., Matlung H.L. Neutrophils in cancer. Immunol. Rev. 2016; 273 (1): 312-328.
  • Fidler I.J., Poste G. The "seed and soil" hypothesis revisited. Lancet Oncol. 2008; 9 (8): 808.
  • Виноградова Т.В., Чернов И.П., Монастырская Г.С., Кондратьева Л.Г., Свердлов Е.Д. Раковые стволовые клетки: пластичность против терапии. Acta Naturae (русскоязычная версия). 2015; 4 (27): 52-63.
  • Liu Q., Zhang H., Jiang X., Qian C., Liu Z., Luo D. Factors involved in cancer metastasis: a better understanding to "seed and soil" hypothesis. Mol. Cancer. 2017; 16 (1): 176.
  • Xu Z., Jiang Y., Steed H., Davidge S., Fu Y. TGFp and EGF synergistically induce a more invasive phenotype of epithelial ovarian cancer cells. Biochem. Biophys. Res. Commun. 2010; 401 (3): 376-381.
  • Yeung T.L., Leung C.S., Wong K.K. TGF-P modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 2013; 73 (16): 5016-5028.
  • Lo C. W., Chen M.W., Hsiao M., Wang S., Chen C.A., Hsiao S.M., Chang J.S., Lai T.C., Rose-John S., Kuo M.L., Wei L.H. IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res. 2011; 71 (2): 424-434.
Еще
Статья научная