Влияния внесения биоугля на теплофизические свойства дерново-подзолистой почвы и составляющие энергетического баланса яровой пшеницы в Ленинградской области при различных условиях почвенного увлажнения

Автор: Доброхотов А.В., Козырева Л.В.

Журнал: Бюллетень Почвенного института им. В.В. Докучаева @byulleten-esoil

Рубрика: Статьи

Статья в выпуске: 116, 2023 года.

Бесплатный доступ

В статье приведены результаты полевого эксперимента по оценке влияния предпосевного внесения биоугля на теплофизические свойства пахотного горизонта дерново-подзолистой супесчаной почвы, составляющие энергетического баланса, температуру подстилающей поверхности и температуру листьев яровой пшеницы сорта “Дарья” при различных условиях почвенного увлажнения в 2022 г. Эксперимент проводился на территории Меньковской опытной станции Агрофизического научно-исследовательского института, расположенной в Гатчинском районе Ленинградской области. Эксперимент включал опытный участок с внесением биоугля в дозе 21.9 т га-1 и контрольный участок. Условия почвенного увлажнения и влагообеспеченность пшеницы характеризовались объемной влажностью почвы и суммарным испарением. По результатам полевых экспериментов было обнаружено значимое влияние (p

Еще

Биоуголь, дерново-подзолистая супесчаная почва, теплофизические свойства почвы, составляющие энергетического баланса, температура подстилающей поверхности, температура листьев, суммарное испарение

Короткий адрес: https://sciup.org/143180768

IDR: 143180768   |   DOI: 10.19047/0136-1694-2023-116-43-75

Список литературы Влияния внесения биоугля на теплофизические свойства дерново-подзолистой почвы и составляющие энергетического баланса яровой пшеницы в Ленинградской области при различных условиях почвенного увлажнения

  • Моисеев К.Г., Зинчук Е.Г. Крупномасштабная почвенная карта Меньковского филиала Агрофизического института Россельхозакадемии // Агрофизика. 2014. Т. 3. № 15. C. 8-17.
  • Abu-Hamdeh N.H., Reeder R.C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter // Soil science society of America Journal. 2000. Vol. 64. No. 4. P. 1285-1290.
  • Archontoulis S.V., Huber I., Miguez F.E., Thorburn P.J., Rogovska N., Laird D.A. A model for mechanistic and system assessments of biochar effects on soils and crops and trade‐offs // Gcb Bioenergy. 2016. Vol. 8. No. 6. P. 1028-1045.
  • Baiamonte G., De Pasquale C., Marsala V., Cimò G., Alonzo G., Crescimanno G., Conte P. Structure alteration of a sandy-clay soil by biochar amendments // Journal of Soils and Sediments. 2015. Vol. 15. No. 4. P. 816-824.
  • Basso A.S., Miguez F.E., Laird D.A., Horton R., Westgate M. Assessing potential of biochar for increasing water‐holding capacity of sandy soils // Gcb Bioenergy. 2013. Vol. 5. No. 2. P. 132-143.
  • Bennett L.T., Judd T.S., Adams M.A. Close-range vertical photography for measuring cover changes in perennial grasslands // Rangeland Ecology & Management/Journal of Range Management Archives. 2000. Vol. 53. No. 6. P. 634-641.
  • Brunetti C., Lamb J., Wielandt S., Uhlemann S., Shirley I., McClure P., Dafflon B. Probabilistic estimation of depth-resolved profiles of soil thermal diffusivity from temperature time series // Earth Surface Dynamics. 2022. Vol. 10. No. 4. P. 687-704.
  • Brutsaert W. On a derivable formula for long‐wave radiation from clear skies // Water resources research. 1975. Vol. 11. No. 5. P. 742-744.
  • Bruun E.W., Hauggaard-Nielsen H., Ibrahim N., Egsgaard H., Ambus P., Jensen P.A., Dam-Johansen K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil // Biomass and Bioenergy. 2011. Vol. 35. No. 3. P. 1182-1189.
  • Cayuela M.L., Sánchez-Monedero M.A., Roig A., Hanley K., Enders A., Lehmann J. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? // Scientific reports. 2013. Vol. 3. No. 1. P. 1-7.
  • Cheng C.H., Lehmann J., Engelhard M.H. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence // Geochimica et Cosmochimica Acta. 2008. Vol. 72. No. 6. P. 1598-1610.
  • Choudhury B.J., Idso S.B., Reginato R.J. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation // Agricultural and Forest Meteorology. 1987. Vol. 39. No. 4. P. 283-297.
  • De Vries D.A. Thermal Properties of Soils. Amsterdam: North-Holland Publishing Company, 1963. 151 p.
  • Efimov A.E., Sitdikova Y.R., Dobrokhotov A.V., Kozyreva, L.V. Monitoring evapotranspiration in an agricultural field and determination of irrigation rates and dates by automated mobile field agrometeorological complex // Water resources. 2018. Vol. 45. No. 1. P. 133-137.
  • Feng W., Yang F., Cen R., Liu J., Qu Z., Miao Q., Chen H. Effects of straw biochar application on soil temperature, available nitrogen and growth of corn // Journal of Environmental Management. 2021. Vol. 277. P.111331.
  • Foken T. Springer Handbook of Atmospheric Measurements. Berlin: Springer Nature, 2021. 1806 p.
  • Gates D.M. Transpiration and leaf temperature // Annual Review of Plant Physiology. 1968. Vol. 19. No. 1. P. 211-238.
  • Genesio L.O., Miglietta F.R., Lugato E., Baronti S., Pieri M., Vaccari F.P. Surface albedo following biochar application in durum wheat // Environmental Research Letters. 2012. Vol. 7. No. 1. P. 014025.
  • Grossman J.M., O’Neill B.E., Tsai S.M., Liang B., Neves E., Lehmann J., Thies J.E. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy // Microbial ecology. 2010. Vol. 60. No. 1. P. 192-205.
  • He H., Dyck M.F., Horton R., Ren T., Bristow K.L., Lv J., Si B. Development and application of the heat pulse method for soil physical measurements // Reviews of Geophysics. 2018. Vol. 56. No. 4. P. 567-620.
  • Jiang C., Yu G., Li Y., Cao G., Yang Z., Sheng W., Yu W. Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment // Ecological Engineering. 2012. Vol. 44. P. 1-9.
  • Jones H.G., Leinonen I. Thermal imaging for the study of plant water relations // Journal of Agricultural Meteorology. 2003. Vol. 59. No. 3. P. 205-217.
  • Joseph S.D., Camps-Arbestain M., Lin Y., Munroe P., Chia C.H., Hook J., Van Zwieten L., Kimber S., Cowie A., Singh B.P., Lehmann J. An investigation into the reactions of biochar in soil // Soil Research. 2010. Vol. 48. No. 7. P. 501-515.
  • Kammann C.I., Schmidt H.P., Messerschmidt N., Linsel S., Steffens D., Müller C., Koyro H.W., Conte P., Joseph S. Plant growth improvement mediated by nitrate capture in co-composted biochar // Scientific reports. 2015. Vol. 5. No. 1. P.1-13.
  • Khanal S., Fulton J., Shearer S. An overview of current and potential applications of thermal remote sensing in precision agriculture // Computers and Electronics in Agriculture. 2017. Vol. 139. P. 22-32.
  • Laird D.A., Fleming P., Davis D.D., Horton R., Wang B., Karlen D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil // Geoderma. 2010. Vol. 158. No. 3-4. P. 443-449.
  • Lehmann J., Gaunt J., Rondon M. Bio-char sequestration in terrestrial ecosystems-a review // Mitigation and adaptation strategies for global change. 2006. Vol. 11. No. 2. P. 403-427.
  • Lehmann J., Joseph S. Biochar for environmental management Science and Technology. London: Earthscan, 2015. 438 p.
  • Liang B., Lehmann J., Sohi S.P., Thies J.E., O’Neill B., Trujillo L., Gaunt J., Solomon D., Grossman J., Neves E.G., Luizão F.J. Black carbon affects the cycling of non-black carbon in soil // Organic Geochemistry. 2010. Vol. 41. No. 2. P. 206-213.
  • Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O'Neill B., Skjemstad J.O., Thies J., Luizão F.J., Petersen J., Neves E.G. Black carbon increases cation exchange capacity in soils // Soil science society of America journal. 2006. Vol. 70. No. 5. P. 1719-1730.
  • Lin Y., Munroe P., Joseph S., Henderson R., Ziolkowski A. Water extractable organic carbon in untreated and chemical treated biochars // Chemosphere. 2012. Vol. 87. No. 2. P. 151-157.
  • Liu S., Lu L., Ma D., Jia L. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements // Hydrology and earth system sciences. 2007. Vol. 11. No. 2. P. 769-783.
  • Liu Z., Xu J., Li X., Wang J. Mechanisms of biochar effects on thermal properties of red soil in south China // Geoderma. 2018. Vol. 323. P. 41-51.
  • Lu S., Ju Z., Ren T., Horton R. A general approach to estimate soil water content from thermal inertia // Agricultural and Forest Meteorology. 2009. Vol. 149. No. 10. P. 1693-1698.
  • Major J., Rondon M., Molina D., Riha S. J., Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol // Plant and soil. 2010. Vol. 333. No. 1. P. 117-128.
  • Oguntunde P.G., Fosu M., Ajayi A.E., Van De Giesen N. Effects of charcoal production on maize yield, chemical properties and texture of soil // Biology and Fertility of soils. 2004. Vol. 39. No. 4. P. 295-299.
  • Pietikäinen J., Kiikkilä O., Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus // Oikos. 2000. Vol. 89. No. 2. P. 231-242.
  • Qin J., Yang K., Lu N., Chen Y., Zhao L., Han M. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia // Remote Sensing of Environment. 2013. Vol. 138. P. 1-9.
  • Schmidt H.P., Pandit B.H., Martinsen V., Cornelissen G., Conte P., Kammann C.I. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil // Agriculture. 2015. Vol. 5. No. 3. P. 723-741.
  • Sohi S.P., Krull E., Lopez-Capel E., Bol R. A review of biochar and its use and function in soil // Advances in agronomy. 2010. Vol. 105. P. 47-82.
  • Soliman A., Heck R.J., Brenning A., Brown R., Miller S. Remote sensing of soil moisture in vineyards using airborne and ground-based thermal inertia data // Remote Sensing. 2013. Vol. 5. No. 8. P. 3729-3748.
  • Steduto P., Hsiao T.C., Raes D., Fereres E. AquaCrop - The FAO crop model to simulate yield response to water: I. Concepts and underlying principles // Agronomy Journal. 2009. Vol. 101. No. 3. P. 426-437.
  • Steiner C., Das K.C., Garcia M., Förster B., Zech W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol // Pedobiologia. 2008. Vol. 51. No. 5-6. P. 359-366.
  • Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes // Hydrology and earth system sciences. 2002. Vol. 6. No. 1. P. 85-100.
  • Suliman W., Harsh J.B., Abu-Lail N.I., Fortuna A.M., Dallmeyer I., Garcia-Pérez M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil // Science of the Total Environment. 2017. Vol. 574. P. 139-147.
  • Usowicz B., Lipiec J., Łukowski M., Marczewski W., Usowicz J. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow // Soil and Tillage Research. 2016. Vol. 164. P. 45-51.
  • Uzoma K.C., Inoue M., Andry H., Fujimaki H., Zahoor A., Nishihara E. Effect of cow manure biochar on maize productivity under sandy soil condition // Soil use and management. 2011. Vol. 27. No. 2. P. 205-212.
  • Visconti F., de Paz J.M., Martinez D., Molina M.J. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils // Agricultural Water Management. 2014. Vol. 132. P. 111-119.
  • Wang T., Stewart C.E., Sun C., Wang Y., Zheng J. Effects of biochar addition on evaporation in the five typical Loess Plateau soils // Catena. 2018. Vol. 162. P. 29-39.
  • Zhang A., Cui L., Pan G., Li L., Hussain Q., Zhang X., Zheng J., Crowley D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China // Agriculture, ecosystems & environment. 2010. Vol. 139. No. 4. P. 469-475.
  • Zhang H., Voroney R.P., Price G.W. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations // Soil Biology and Biochemistry. 2015. Vol. 83. P. 19-28.
  • Zhang Q., Wang Y., Wu Y., Wang X., Du Z., Liu X., Song J. Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature // Soil Science Society of America Journal. 2013. Vol. 77. No. 5. P. 1478-1487.
  • Zhao J., Ren T., Zhang Q., Du Z., Wang Y. Effects of biochar amendment on soil thermal properties in the North China Plain // Soil Science Society of America Journal. 2016. Vol. 80. No. 5. P. 1157-1166.
  • Zhao W., Dong X., Wu Z., Wei C., Li L., Yu D., Fan X., Ma Y. Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status // Journal of Hydrology. 2022. Vol. 615. P. 128671.
  • Zhou Z., Majeed Y., Naranjo G.D., Gambacorta E.M. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications // Computers and Electronics in Agriculture. 2021. Vol. 182. P. 106019.
Еще
Статья научная