Влияние совместного действия постоянного освещения и хронической алкогольной интоксикации на ультраструктуру гепатоцитов самцов и самок крыс «Вистар»

Автор: Арешидзе Д.А., Михалва Л.М., Кактурский Л.В., Кондашевская М.В., Козлова М.А., Черников В.П.

Журнал: Ульяновский медико-биологический журнал @medbio-ulsu

Рубрика: Биологические науки

Статья в выпуске: 3, 2023 года.

Бесплатный доступ

Световое загрязнение, вызывающее дефицит мелатонина и нарушение циркадианной ритмичности, ассоциировано с развитием ряда патологий печени. Рассогласование суточной ритмики приводит к повышению восприимчивости печени к вызываемым алкоголем повреждениям, усилению тяжести алкогольной болезни. Целью исследования было изучение сочетанного действия постоянного освещения и хронической алкогольной интоксикации (ХАИ) на ультраструктуру гепатоцитов крыс обоих полов. Материалы и методы. Исследование проведено на 120 самцах и 80 самках крыс аутбредного стока «Вистар» в возрасте 6 мес. Длительность эксперимента составляла 3 нед. Визуально оценивали различия в морфологической картине ультраструктур гепатоцитов, количественно определяли процент гепатоцитов, содержащих липидные вакуоли. Результаты. Постоянное освещение и хроническая алкогольная интоксикация вызывали формирование состояния аллостаза. В клетках печени крыс обоих полов были выявлены отек гепатоцитов, набухание митохондрий, сморщивание ядра, развитие жировой дистрофии, гибель гепатоцитов. Половые различия заключались в меньшей выраженности указанных патологических изменений у самок. В сочетании с отсутствием у крыс женского пола разрастания коллагеновых прослоек в тканях печени перечисленные данные свидетельствуют о том, что в печени самок, в отличие от печени самцов, сочетанное воздействие постоянного освещения и ХАИ не приводит к развитию изменений воспалительного характера и нарушению архитектоники. С учетом ранее охарактеризованной нами морфологической картины печени крыс обоих полов и ряда биохимических параметров, описывающих ее функциональное состояние, полученные данные о межполовых различиях в ультраструктурных характеристиках гепатоцитов крыс, подверженных воздействию ХАИ и постоянного освещения, позволяют нам высказать утверждение о более успешном протекании адаптации гепатоцитов к стрессорным условиям у самок крыс, нежели у самцов.

Еще

Реакция гепатоцитов самок и самцов крыс «вистар» на сочетанное действие постоянного освещения и потребление алкоголя, мелатонин, электронная микроскопия

Короткий адрес: https://sciup.org/14128737

IDR: 14128737   |   DOI: 10.34014/2227-1848-2023-3-151-166

Список литературы Влияние совместного действия постоянного освещения и хронической алкогольной интоксикации на ультраструктуру гепатоцитов самцов и самок крыс «Вистар»

  • Агаджанян Н.А., Петров В.И., Радыш И.В., Краюшкин С.И. Хронофизиология, хронофармаколо-гия и хронотерапия. Вологоград; 2005. 336.
  • Zimmet P., Alberti K.G.M.M., Stern N., Bilu C., El-Osta A., Einat H., Kronfeld-Schor N. The Circadian Syndrome: is the Metabolic Syndrome and much more. Journal of internal medicine. 2019; 286 (2): 181-191.
  • Gubin D.G., Kolomeichuk S.N., Weinert D. Circadian clock precision, health, and longevity. J. Chro-nomed. 2021; 23 (1): 3-15.
  • Bumgarner J.R., Nelson R.J. Light at Night and Disrupted Circadian Rhythms Alter Physiology and Behavior. Integr Comp Biol. 2021; 61 (3): 1160-1169.
  • Farkova E., Schneider J., SmotekM., Bakstein E., Herlesova J., Koprivova J., FriedM. Weight loss in conservative treatment of obesity in women is associated with physical activity and circadian phenotype: A longitudinal observational study. BioPsychoSocial Medicine. 2019; 13: 1-10.
  • Пудиков И. Некоторые аспекты количественной оценки влияния света на циркадианные физиологические функции. Полупроводниковая светотехника. 2020; 2: 30-36.
  • Хабаров С.В., Стерликова Н.А. Мелатонин и его роль в циркадной регуляции репродуктивной функции (Обзор литературы). Вестник новых медицинских технологий. 2022; 29 (3): 17-31.
  • Talib W.H., Alsayed A.R., Abuawad A., Daoud S., Mahmod A.I. Melatonin in cancer treatment: current knowledge and future opportunities. Molecules. 2021; 26 (9): 2506.
  • Han Y., Chen L., Baiocchi L., Ceci L., Glaser S., Francis H., Alpini G., Kennedy L. Circadian Rhythm and Melatonin in Liver Carcinogenesis: Updates on Current Findings. Crit Rev Oncog. 2021; 26 (3): 69-85.
  • Nelson R.J., Chbeir S. Dark matters: effects of light at night on metabolism. Proc Nutr Soc. 2018; 77 (3): 223-229.
  • Walker W.H. 2nd, Bumgarner J.R., Walton J.C., Liu J.A., Melendez-Fernandez O.H., Nelson R.J., DeVriesA.C. Light Pollution and Cancer. Int J Mol Sci. 2020; 21 (24): 9360.
  • Kramer A., Lange T., Spies C., Finger A.M., Berg D., Oster H. Foundations of circadian medicine. PLoS biology. 2022; 20 (3): e3001567.
  • Gonzalez D., Justin H., Reiss S., Faulkner J., Mahoney H., Yunus A., Gulick D. Circadian rhythm shifts and alcohol access in adolescence synergistically increase alcohol preference and intake in adulthood in male C57BL/6 mice. Behavioural Brain Research. 2023; 438: 114216.
  • Karlsson H., Persson E., Perini I., Yngve A., HeiligM., Tinghog G. Acute effects of alcohol on social and personal decision making. Neuropsychopharmacology. 2022; 47 (4): 824-831.
  • Tamura E.K., Oliveira-Silva K.S., Ferreira-Moraes F.A., Marinho E.A., Guerrero-Vargas N.N. Circadian rhythms and substance use disorders: A bidirectional relationship. Pharmacology Biochemistry and Behavior. 2021; 201: 173105.
  • Katary M., Abdel-Rahman A.A. Alcohol suppresses cardiovascular diurnal variations in male normotensive rats: Role of reduced PER2 expression and CYP2E1 hyperactivity in the heart. Alcohol. 2020; 89: 27-36.
  • Tice A.L., Laudato J.A., Fadool D.A., Gordon B.S., Steiner J.L. Acute binge alcohol alters whole body metabolism and the time-dependent expression of skeletal muscle-specific metabolic markers for multiple days in mice. American Journal of Physiology-Endocrinology and Metabolism. 2022; 323 (3): E215-E230.
  • KurhalukN. Alcohol and melatonin. Chronobiol Int. 2021; 38 (6): 785-800.
  • Costa R., Mangini C., Domenie E.D., Zarantonello L., Montagnese S. Circadian rhythms and the liver. Liver International. 2023; 43 (3): 534-545.
  • Nicolaides N.C., Chrousos G.P. Sex differences in circadian endocrine rhythms: Clinical implications. Eur J Neurosci. 2020; 52 (1): 2575-2585.
  • Walton J.C., Bumgarner J.R., Nelson R.J. Sex Differences in Circadian Rhythms. Cold Spring Harb Per-spect Biol. 2022; 14 (7): a039107.
  • Layton A. T. His and her mathematical models of physiological systems. Mathematical Biosciences. 2021; 338: 108642.
  • Балканов А.С., Розанов И.Д., Голанов А.В., Гаганов Л.Е., Черников В.П. Состояние эндотелия капилляров перитуморальной зоны после адъювантной лучевой терапии глиобластомы головного мозга. Клиническая и экспериментальная морфология. 2021; 10 (1): 33-40.
  • Kozlova M.A., Kirillov Y.A., Makartseva L.A., Chernov I., Areshidze D.A. Morphofunctional state and circadian rhythms of the liver under the influence of chronic alcohol intoxication and constant lighting. International Journal of Molecular Sciences. 2021; 22 (23): 13007.
  • Areshidze D.A., Kozlova M.A. Morphofunctional State and Circadian Rhythms of the Liver of Female Rats under the Influence of Chronic Alcohol Intoxication and Constant Lighting. International Journal of Molecular Sciences. 2022; 23 (18): 10744.
  • Tsomaia K., Patarashvil L., Karumidze N., Bebiashvili I., Azmaipharashvili E., Modebadze I., Kordzaia D. Liver structural transformation after partial hepatectomy and repeated partial hepatectomy in rats: A renewed view on liver regeneration. World Journal of Gastroenterology. 2020; 26 (27): 3899.
  • Tan H.K., Yates E., Lilly K., Dhanda A.D. Oxidative stress in alcohol-related liver disease. World journal of hepatology. 2020; 12 (7): 332.
  • Prasun P., Ginevic I., Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol. 2021; 6: 4. DOI: 10.21037/tgh-20-125.
  • Sergi C.M., Sergi C.M. Parenchymal GI Glands: Liver. Pathology of Childhood and Adolescence: An Illustrated Guide. Springer; 2020: 425-549.
  • Shi Y., Liu Y., Wang S., Huang J., Luo Z., Jiang M., You J. Endoplasmic reticulum-targeted inhibition of CYP2E1 with vitamin E nanoemulsions alleviates hepatocyte oxidative stress and reverses alcoholic liver disease. Biomaterials. 2022; 288: 121720.
  • Teschke R., Xuan T.D. Heavy metals, halogenated hydrocarbons, phthalates, glyphosate, cordycepin, alcohol, drugs, and herbs, assessed for liver injury and mechanistic steps. Frontiers in Bioscience-Landmark. 2022; 27 (11): 314.
  • Slevin E., Baiocchi L., Wu N., Ekser B., Sato K., Lin E., Meng F. Kupffer cells: Inflammation pathways and cell-cell interactions in alcohol-associated liver disease. The American Journal of Pathology. 2020; 190 (11): 2185-2193.
  • BlázovicsA. Alcoholic liver disease. In: Influence of Nutrients, Bioactive Compounds, and Plant Extracts in Liver Diseases. Academic Press; 2021: 57-82.
  • НалобинД.С., Супруненко Е.А., ГоличенковВ.А. Влияние мелатонина на дифференцировочный потенциал клеток Ито при индуцированном фиброзе печени мыши. Бюллетень экспериментальной биологии и медицины. 2016; 161 (6): 807-811.
  • Greuter T., Malhi H., Gores G.J., Shah V.H. Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight. 2017; 2 (17): e95354.
  • Owino S., Contreras-Alcantara S., Baba K., Tosini G. Melatonin signaling controls the daily rhythm in blood glucose levels independent of peripheral clocks. PloS One. 2016; 11 (1): e0148214.
  • Guan Q., Wang Z., Cao J., Dong Y., Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. Environmental Pollution. 2022; 312: 120045.
  • Ozaki M. Cellular and molecular mechanisms of liver regeneration: Proliferation, growth, death and protection of hepatocytes. Seminars in cell & developmental biology. 2022; 100: 62-73.
  • Solhi R., Lotfinia M., Gramignoli R., Najimi M., Vosough M. Metabolic hallmarks of liver regeneration. Trends in Endocrinology & Metabolism. 2021; 32 (9): 731-745.
  • Maitra D., Carter E.L., Richardson R. Oxygen and conformation dependent protein oxidation and aggregation by porphyrins in hepatocytes and light-exposed cells. Cellular and Molecular Gastroenterology and Hepatology. 2019; 8 (4): 659-682.
  • Contreras-Zentella M.L., Villalobos-García D., Hernández-Muñoz R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant defense system. Antioxidants. 2022; 11 (7): 1258.
  • Sato K., Meng F., Francis H., Wu N., Chen L., Kennedy L., Zhou T., Franchitto A., Onori P., Gaudio E., Glaser S., Alpini G. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. J Pineal Res. 2020; 68 (3): e12639.
  • Mierke C.T., Mierke C.T. Lysosomes and Peroxisomes. In: Cellular Mechanics and Biophysics: Structure and Function of Basic Cellular Components Regulating Cell Mechanics. Springer; 2020: 277-332.
  • Palmisano B.T., Zhu L., Stafford J.M. Role of Estrogens in the Regulation of Liver Lipid Metabolism. Adv Exp Med Biol. 2017; 1043: 227-256.
  • Lee C., Kim J., Jung Y. Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells. 2019; 8 (10): 1259.
  • Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. Journal of hepatology. 2016; 64 (6): 1403-1415.
  • Dukic M., Radonjic T., Jovanovic I., Zdravkovic M., Todorovic Z., Kraisnik N. Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. International Journal of Molecular Sciences. 2023; 24 (4): 3735.
Еще
Статья научная