Влияние потерь преобразователя на точность управления потоками мощности в многотерминальных системах «преобразователь источника напряжения - высоковольтная передача постоянного тока»

Бесплатный доступ

Потери мощности в преобразователях вызывают в сети постоянного тока отклонения потока мощности от желаемого значения. Для точного управления потоком мощности в сети постоянного тока необходимо устранить указанные отклонения. При моделировании пятитерминальной системы ПИН-ВППТ в Matlab/Simulink показано, как добиться точного управления потоком мощности в системе МППТ с учетом потерь мощности в преобразователях и в линии постоянного тока

Многотерминальный пин-вппт, потери в преобразователе, снижение напряжения, потери мощности, управление потоком мощности, опорное напряжение, опорная мощность

Короткий адрес: https://sciup.org/146282717

IDR: 146282717

Список литературы Влияние потерь преобразователя на точность управления потоками мощности в многотерминальных системах «преобразователь источника напряжения - высоковольтная передача постоянного тока»

  • Andreasson M., Dimarogonas D. V., Sandberg H., Johansson K. H. Distributed controllers for multi-terminal HVDC transmission systems, J. IEEE Control Netw. Syst., 2017, 4(3), 564-574.
  • Van Hertem D., Ghandhari M. Multi-terminal VSC HVDC for the european super grid: Obstacles, J. Renewable and Sustainable Energy Reviews, 2010, 14(9), 3156-3163.
  • Уфа Р. А., Сулайманова В. А., Гусев А. С., Ставицкий С. А. Принципы построения гибридной модели вставки постоянного тока на базе преобразователя напряжения. Журнал ВЕСТН. САМАР. ГОС. ТЕХН., 2018, 3(59), 180-189 [Ufa R. A., Sulaimanova V. A., Gusev A. S., Stavitsky S. A. Principles of constructing a hybrid model of a DC link based on a voltage converter, J. VESTN. SAMAR. GOS. TECHN, 2018, 3(59), 180-189 (in Rus.)].
  • Вафин Ш. И., Видинеев А. В. Оценка экономической целесообразности перевода воздушных линий переменного тока 500-750 кв на постоянный ток. Журнал Энергетика Татарстана, 2015, 4(40), 56-62 [Vafin Sh.I., Vidineev A. V. Estimation of the economic expediency of the transfer overhead lines of alternating current 500-750 kv into the direct current, J. Energy of Tatarstan, 2015, 4(40), 56-62 (in Rus.)].
  • Nikoobakht A., Aghaei J., Niknam T., Vahidinasab V., Farahmand H., Korpas M. Towards robust opf solution strategy for the future ac/dc grids: Case of VSC-HVDC-connected offshore wind farms, J. IETRenewable Power Gener., 2018, 12(6), 691-701.
  • Sun F., Ma J., Yu M., Wei W. A robust optimal coordinated droop control method for multiple VSCS in ac-dc distribution network, J. IEEE Trans. Power Syst., 2019, 34(6), 5002-5011.
  • Jamshed Ahmed Ansarl., Chongru Liu., Shahid Aziz Khan. MMC Based MTDC Grids: A Detailed Review on Issues and Challenges for Operation, Control and Protection Schemes, J. IEEE. Access, 2020, 8, 168154-168165.
  • Thams F., Eriksson R., Molinas M. Interaction of droop control structures and its inherent effect on the power transfer limits in multi-terminal VSC-HVDC, J. IEEE Trans. Power Del., 2017, 32(1), 182-192.
  • Eduardo Prieto-Araujo., AgustíEgea-Alvarez., Sajjad Fekriasl., Oriol Gomis-Bellmunt. DC Voltage Droop Control Design for Multi-terminal HVDC Systems Considering AC and DC Grid Dynamics, J. IEEE Transactions on Power Delivery, 2016, 31(2), 575-585.
  • Wang W., Barnes M. Power flow algorithms for multi-terminal VSC-HVDC with droop control, J. IEEE Trans. Power Syst., 2014, 29(4), 1721-1730.
  • Abdelwahed M. A., El-Saadany E. F. Power sharing control strategy of multi-terminal VSC-HVDC transmission systems utilizing adaptive voltage droop, J. IEEE Trans. Sustain. Energy, 2017, 8(2), 605-615.
  • Rouzbehi K., Miranian A., Candela J. I., Luna A., Rodriguez P. A generalized voltage droop strategy for control of multi-terminal dc grids, J. EEE Trans. Ind. Appl, 2015, 51(1), 607-618.
  • Gavriluta C., Candela J. I., Rocabert J., Luna A., Rodriguez P. Adaptive droop for control of multi-terminal dc bus integrating energy storage, J. IEEE Trans. Power Del., 2015, 30(1), 16-24.
  • Rakibuzzaman Shah, Jesus C. Sánchez, Robin Preece, Mike Barnes. Stability and control of mixed AC-DC systems with VSC-HVDC: a review, J. IET Gener. Transm. Distrib, 2018, 12(10), 2207-2219.
  • Ting An, Guangfu Tang, Weinan Wang. Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China, J. IET. High Volt, 2017, 2(1), 1-10.
  • Rashid Hussain Chandio, Faheem Akhtar Chachar, Jahangeer Badar Soomro, Jamshed Ahmed Ansari, Hafiz Mudassir Munir, Hossam M., Zawbaa, Salah Kamel. Control and protection of MMC-based HVDC systems: A review, J. ELSEVIER. Energy Reports, 2023, 9, 1571-1588.
  • Mahmudreza Changizian, Amirreza Mizani, Abbas Shoulaie a. A novel control method for restraining starting-up over current in VSC-HVDC System, J. ELSEVIER. Electric Power Systems Research, 2022, 206, 1-11.
  • Junyi Zhai, Xinliang Dai, Yuning Jiang, Ying Xue, Veit Hagenmeyer, Colin N. Jones, XiaoPing Zhang. Distributed Optimal Power Flow for VSC-MTDC Meshed AC/DC Grids Using ALADIN, J. IEEE. Transactions on Power Systems, 2022, 37(6), 4861-4873.
  • Yang Z., Zhong H., Bose A., Xia Q., Kang C. Optimal power flow in AC-DC grids with discrete control devices, J. IEEE Trans. Power Syst., 2018, 33(2), 1461-1472.
  • Ergun H., Dave J., Van Hertem D., Geth F. Optimal power flow for AC-DC grids: Formulation, convex relaxation, linear approximation and implementation, J. IEEE Trans. Power Syst., 2019, 34(4), 2980-2990.
  • Yizhen Wang, Bin Li, Zexin Zhou, Zhengguang Chen, Weijie Wen, Xialin Li, Chengshan Wang. DC voltage deviation-dependent voltage droop control method for VSC-MTDC systems under large disturbances, J. IETRenew. Power Gener., 2020, 14(5), 891-896.
  • Omkar Yadav, Sheetla Prasad, Nand Kishor, Richa Negi, Shubhi Purwar. Controller design for MTDC grid to enhance power sharing and stability, J. IET Gener. Transm. Distrib., 2020, 14(12), 2323-2332.
  • Chen X., Wang L., Sun H., Chen Y. Fuzzy logic based adaptive droop control in multiterminal HVDC for wind power integration, J. IEEE Trans. Energy Convers, 2017, 32(3), 1200-1208.
  • Samir Sayah., Abdellatif Hamouda. Optimal power flow solution of integrated AC-DC power system using enhanced differential evolution algorithm, J. Electrical Energy Systems, 2019, 29(2), 1-27.
  • Mohamadreza Baradar, Mehrdad Ghandhari. A Multi-Option Unified Power Flow Approach for Hybrid AC/DC Grids Incorporating Multi-Terminal VSC-HVDC, J. IEEE. Transactions on Power Systems, 2013, 28(3), 2376-2383.
  • Yizhen Wang, Fengliang Qiu, Zhongguan Wang. Mode-Switching Strategy of Droop Control for VSC-MTDC Systems Considering Maximum DC Voltage Regulation Capabil, CSEE Journal of Power and Energy Systems, 2015, 1-10.
  • Sunilkumar Agrawal, Prasanta Kundu. A novel multi-objective unified optimal power flow-based methodology for optimal installation of VSC-HVDC converter, J. Electrical Energy Systems, 2021, 31(8), 1-17.
  • Luis M. Castro, Enrique Acha. On the Dynamic Modeling of Marine VSC-HVDC Power Grids Including Offshore Wind Farms, J. IEEE Transactions on Sustainable Energy, 2020, 11(4), 2889-2900.
  • Murthy Priya, Pathipooranam Ponnambalam, Kola Muralikumar. Modular-multilevel converter topologies and applications - a review, J. IET Power Electronics, 2019, 12(2), 170-183.
  • Sawsan Sayed, Ahmed Massoud. Minimum transmission power loss in multi-terminal HVDC systems: A general methodology for radial and mesh networks, J. Elsevier. Alexandria Engineering Journal, 2019, 58, 115-125.
Еще
Статья научная