Участие цитокинина и ауксина в регулировании процесса накопления в бобовых

Автор: Глянко А.К., Ищенко А.А.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.11, 2015 года.

Бесплатный доступ

В статье обобщены данные о физиологической роли фитогормонов - цитокинина и ауксина - в инициировании деления корневых клеток коры головного мозга, что приводит к образованию зачатка корневого узла и его дальнейшего органогенеза. Было доказано, что высокий уровень цитокинина и низкий уровень ауксина являются необходимым условием для этого процесса. Механизм, обеспечивающий увеличение соотношения цитокинин: ауксин, связан с ингибированием переноса ауксина от воздушных органов к корню с вовлечением передачи цитокинина. Снижение цитокинина: соотношение ауксина на фоне ингибирования передачи цитокинина инициирует образование боковых корней. Обсуждается альтернативная роль rhizobial Nod-factor, цитокинина и флавоноидов в органогенезе корневого узла. Представлены схемы реакций и соединений, участвующих в инициировании образования зачатков зачатков и боковых корней.

Еще

Короткий адрес: https://sciup.org/14323967

IDR: 14323967

Список литературы Участие цитокинина и ауксина в регулировании процесса накопления в бобовых

  • Adamowski M. and Friml J. (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell, 27, 20-32
  • Akimova G.P. and Sokolova M.G. (2012) Cytokinin content during early stages of legume-rhizobial symbiosis and effect of hypothermia. Russian J. Plant Physiol., 59, 656-661
  • Bauer P., Ratet P., Crespi M.D. and Kondorosi A. (1996) Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant J., 10, 91-106
  • Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., Morien G., Mysore K.S., Wen J., Olroyd G.E.D., Downie J.A. and Murray J. D. (2014) The root hair “Infectome” of Medicago trucatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell, 26, 4680-4701
  • Champion A., Lucas M., Tromas A., Vaissayre V., Crabos A., Diedhiou I., Prodjinoto H., Moukouanga D., Pirolles E., Cissoko M., Bonneau J., Gherbi H., Franche C., Hocher V., Svistoonoff S. and Laplaze L. (2015) Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauka nodules leads to increased nodulation. Plant Physiol., 167, 1149-1157
  • Cooper J.B. and Long S.R. (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell., 6, 215-225
  • DeLong A., Mockaitis K. and Christensen S. (2002) Protein phosphorylation in the delivery of and response to auxin signals. Plant Mol. Biol., 49, 285-303
  • Downie J.A. (2007) Infectious heresy. Science, 316, 1296-1297
  • Fang Y. and Hirsh A.M. (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol., 116, 53-68
  • Ferreira F.J. and Kieber J.J. (2005) Cytokinin signaling. Curr. Opin. Plant Biol., 8, 518-525
  • Ferguson B.J., Ross J.J. and Reid J.B. (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol., 138, 2396-2405
  • Ferguson B.J., Indrasumunar A., Hayashi S., Lin Y-H., Reid D.E. and Gresshoff P.M. (2010) Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol., 52, 61-76
  • Gamburg K.Z., Rekoslavskaya N.I., Shvetsov S.G. (1990) Auksinyi v kul’turah tkaney i kletok pacteniy. Novosibirsk: Nauka, 240 s.
  • Giraud E., Moulin L., Vallenet D., Barbe V., Cytryn E., Sadowsky M.et al. (2007) Legumes symbioses: absence of Nod genes in photosynthetic Bradyrhizobia. Science, 316, 1307-1312
  • Glyan’ko A.K. (2015) Signaling systems of rhizobia (Rhizobiaceae) and plants (Fabaceae) at formation of legume-rhizobium symbiosis. Appl. Biochem. Microbiol., 51, no 5 (in press)
  • Glyan’ko A.K., Akimova G.P., Sokolova M.G., Makarova L.E. and Vasil’eva G.G. (2007) The defense and regulatory mechanisms during development of legume-rhizobium symbiosis//Appl. Biochem. Microbiol., 43, 260-267
  • Gonzalez-Rizzo S., Crespi M. and Frugier F. (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell, 18, 2680-2693
  • Hirsch A.M. (1992). Developmental biology of legume nodulation. New Phytol., 122, 211-237
  • Hirsch A.M. and Fang Y. (1994) Plant hormones and nodulation: what’s the connection? Plant Mol. Biol., 26, 5-9
  • Hirsch A.M., Fang Y., Asad S. and Kapulnik Y. (1997) The role phytohormones in plant-microbe symbioses. Plant Soil, 194, 171-184
  • Ioio R.D., Linhares F.S., Scacchi E., Casamitjana-Martinez E., Heidstra R., Costantino P. and Sabatini S. (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 17, 678-682
  • Jacobs M. and Rubery P. H. (1988) Naturally occurring auxin transport regulators. Science, 241, 346-349
  • Kefeli V.I. (1974) Prirodnyie ingibitoryi rosta i fitogormonyi. Moskva: Nauka, 254 s.
  • Kulaeva O. N. (1973) Citokininyi, ih struktura i funkcija. Moskva: Nauka, 264 s
  • Kuppusamy K.T., Ivashuta S., Bucciarelli B., Vance C.P., Gantt J.S., VandenBosch K.A. (2009) Knockdown of cell division cycle16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol., 151, 1155-1166
  • Leyser O. (2006) Dynamic integration of auxin transport and signaling. Curr. Biol., 16, R424-433
  • Lohar D.P., Schaff J.E., Laskey J.G., Kieber J.J., Bilyeu K.D. and Bird D.M. (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J., 38, 203-214
  • Mathesius U., Schlaman H.R.M., Spaink H.P., Sautter C., Rolfe B.G. and Djordjevic M.A. (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J., 14, 23-34
  • Mathesius U., Charon C., Rolfe B.G., Kondorosi A. and Crespi M. (2000) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol. Plant-Microbe Interact., 13, 617-628
  • Mathesius U. (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot., 52, 419-426
  • Moubayidin L., Mambro R. and Sabatini S. (2009) Cytokinin-auxin crosstalk. Trends Plant Sci., 14, 557-562
  • Muller B. and Sheen J. (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453, 1094-1097
  • Mulligan J.T. and Long S.K. (1989) A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics, 122, 7-18
  • Murray J.D., Karas B.J., Sato S., Tabata S., Amyot L. and Sczczyglowski K. (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 315, 101-104
  • Murray J.D. (2011) Invasion by invitation: rhizobial infection in legumes. Mol. Plant-Microbe Interac., 24, 631-639
  • Olah B., Briere C., Becard G., Denarie J., Gough C. (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula. Plant J., 44, 195-207
  • Oldroyd G.E. (2007) Nodules and hormones. Science, 315, 52-53
  • Oldroyd G.E. and Downie J.A. (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol., 59, 519-546
  • Oldroyd G.E., Murray J.D., Poole P.S. and Downie J.A. (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet., 45, 119-144
  • Peer W.A. and Murphy A.S. (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci.,12, 556-563
  • Plet J., Wasson A., Ariel F., Le Signor C. and Baker D. (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago trancatula. Plant J., 65, 622-633
  • Polevoy V.V. (1982) Fitogormonyi. Leningrad: Isdatel’stvo LGU, 248 s.
  • Sakakibara H. (2005). Cytokinin biosynthesis and regulation. Vitam. Horm., 72, 271-287
  • Skoog F. and Miller C.O. (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp. Soc. Exp. Biol., 54, 118-131
  • Thimann K.V. (1936). On the physiology of the formation of nodules on legume roots. Proc. Natl. Acad. Sci. USA, 22, 511-514
  • Timmers A.C.J. (2008) The role of the plant cytoskeleton in the interaction between legumes and rhizobia. J. Microsc., 231, 247-256
  • Tirichine L., Sandal N., Madsen L.H., Radutoiu S. and Albrektsen A.S. (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science, 315, 104-107
  • Truchet G., Barker D.G., Camut S., deBilly F., Vasse J. and Huguet T. (1989) Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet., 219, 65-68
  • Wasson A.P., Pellerone F.I. and Mathesius U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell, 18, 1617-1629
  • Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H. and Schmuelling T. (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 15, 2532-2550
  • Zhang J., Subramanian S., Stacey G. and Yu O. (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J., 57, 171-183
Еще
Статья обзорная