Toxicity concerns of semiconducting nanostructures on aquatic plant Hydrilla verticillata

Автор: Mishra Priya, Shukla Vineet K., Yadav Raghvendra S., Pandey Avinash C.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.9, 2013 года.

Бесплатный доступ

In this article, we have examined toxicity of nanostructures such as flower-like ZnO capped with starch, spherical uncapped ZnO and spherical CdS on aquatic plant Hydrilla verticillata, which has not done before. Hydrilla plant was exposed by these nanoparticles at a concentration of 400 mg/L for 7 days and changes in the biochemical parameters such as catalase activity, chlorophyll content and protein content were observed. It was perceived that spherical CdS nanoparticles were more toxic than the corresponding ZnO nanoparticles since there was a decrease in chlorophyll content and increase in catalase activity. This effort upsurge an interest in understanding the hazards of nanomaterials and their risk, which poses an impact on our environment and how they can be monitored via simple biochemical assays on plant systems.

Еще

Nanomaterials, hydrilla, catalase, chlorophyll, protein

Короткий адрес: https://sciup.org/14323747

IDR: 14323747

Список литературы Toxicity concerns of semiconducting nanostructures on aquatic plant Hydrilla verticillata

  • Aebi, H. (1983) Catalase, In H Bergmeyer, ed, Methods of Enzymatic Analysis 3. Verlag Chemie, Weinheim, Germany. 273-277.
  • APHA.: Standard methods for the examination of water and wastewater 15th,ed. Washington, DC, APHA, NY. 1995.
  • Arnon, D.I. (1949) Copper Enzymes In Isolated Chloroplasts Polyphenoloxidase In Beta Vulgaris. Plant Physiology. 24: 1-15.
  • Conrath, U., Chen, Z., Ricigliano, J.R., Klessig, D.F. (1955) Two inducers of plant defense responses, 2,6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proceedings of the national academy of sciences USA. 92(16): 7143-7147.
  • Elgrabli, D., Floriani, M., Abella-Gallart, S., Meunier, L., Gamez, C., Delalain, P., Rogerieux, F., Boczkowski, J., Lacroix, G. (2008). Biodistribution and clearance of instilled carbon nanotubes in rat lung. Particle and Fibre Toxicology. 5: 20.
  • Farre, M., Gajda-Schrantz, K., Kantiani, L., Barcelo, D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry. 393: 81-95.
  • Griffitt, J.R., Luo, J., Gao, J., Bonzongo, J.C., Barder, S.D. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology Chemistry.27:1972-1978.
  • Gulden, M., Morchel, S., Seibert, H. (2005) Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration. Aquatic Toxicology. 71(3): 229-236.
  • Handy, R.D., Owen, R., Valsami-Jones, E. (2008). The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 17: 315-325.
  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71: 1308-1316.
  • Hong, F.S., Yang, F., Liu, C., Gao, Q., Wan,Z., Gu,F., Wu,C., Ma,Z., Zhou,J., Yang, P. (2005). Influences of nano-TiO2 on the chloroplast aging of spinach under light. Element Research Biological Trace. 104: 249-260.
  • Jiang, W., Mashayekhi, H., Xing, B. (2009). Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental Pollution. 157: 1619-1625.
  • Johansen, A., Pedersen, L.A., Jensen, A.K., Karlson, U., Hansen, M.B., Scott-Fordsmand, J.J., Winding, A. (2008). Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environment Toxicology Chemistry. 27: 1895-1903.
  • Krupa, Z., Baranoneska, M., Orzol, D. (1996) Effect of cadmium on chlorophyll molecule. Acta Physiologiae Plantarum. 18: 147-151.
  • Lee, C., Mahendra, S., Zodrow, K., Li,D., Tsai, Y.C., Braam, J., Alvarez. P.J.J (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environment Toxicology Chemistry. 29: 669-675.
  • Li, Z., Du, Y. (2003) Biomimic Synthesis of CdS Nanoparticles with Enhances Luminescence. Material Letter. 57: 2480-2484.
  • Lin, D., Xing, B. (2008) Root uptake and phytotoxicity of ZnO nanoparticles Environment Science Technology. 42: 5580-5585.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., (1951) Protein measurement with the Folin-Phenol reagents. Journal of Biological Chemistry. 193: 265-275.
  • Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R., Tao, M.X. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science. 21: 168-172.
  • Mishra, P., Yadav, R.S., Pandey, A.C. (2010). Growth Mechanism and Photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical synthesis. Ultrasonic Sonochemistry. 17: 560-565.
  • Mohan, B.S., Hosetti, B.B. (2006) Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans L. grown in macrophyte ponds. Journal of Environmental Biology. 27: 701-704.
  • Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment International. 32: 967-976.
  • Mura, A., Pintus, F., Medda, R., Floris, G., Rinaldi, A.C., Padiglia, A. (2007) Catalase and antiquitin from euphorbia characias:two proteins involved in plant defence? Biochemistry (Mosc), 72 (5): 501-508.
  • Nel, A., Xia, T., Madler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science. 311: 622-627
  • Percy, M.E. (1984) Catalase: an old enzyme with a new role?. Journal of Biochemistry and Cell Biology. 62: 1006-1014.
  • Prasad, M.N.V. (2004) Heavy Metal Stress in Plants: From Biomolecules to Ecosystems, 2nd, ed. Springer, New York, USA.
  • Sanita di Toppi, L., and Gabbrielli, R. (1999). Responses to cadmium in higher plants. Environmental Experiment Botany. 41: 105-130.
  • Scandalios, J.G., Guan, L.M., Polidoros, A.N. (1997) Oxidative stress and the molecular biology of antioxidant defences. Scandalios, J.G. (Ed.). Cold Spring Harbor Lab. Press, Plainview, NY 343-406.
  • Sen, A.K., Mondal, N.G., Mondal, S. (1994) Toxic effects of chromium (VI) on the plants Salvinia natans. Environmental Ecology. 12: 279-283.
  • Wang, H., Wick, L.R., Xing, B. (2009).Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution. 157: 1171-1177.
  • Wang, J., Zhang, X., Chen, Y., Sommerfeld, M., Hu, Q. (2008). Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere. 73: 1121-1128.
  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce.cellular toxicity according to an oxidative stress paradigm. Nano Letter. 6(8): 1794-1807.
  • Yadav, R.S., Pandey, A.C. (2007) Small angle X-ray scattering and photoluminescence study of ZnO nanoparticles synthesized by hydrothermal process. Journal of Experimental Nanoscience. 2:177-180.
  • Zheng, L., Hong, F., Lu, S., Liu, C. (2005) Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research.104: 83-91.
Еще
Статья научная