Технологические инновации и возникновение новой междисциплинарной области – аналитики менеджмента

Бесплатный доступ

Во введении обосновывается тот факт, что междисциплинарные исследования основываются на общеизвестных знаниях. Когда знание доступно каждому, то с течением времени может произойти фундаментальный сдвиг и возникнуть новая междисциплинарная область. Например, нанонаука и квантовые вычисления возникли как междисциплинарные области, которые в конечном итоге оформились в самостоятельные дисциплины. Основная часть. В статье приведен обзор современных материалов, посвященных аналитике менеджмента. Аналитика менеджмента – это новая развивающаяся междисциплинарная область, которой уделяется все больше и больше внимания. В данном исследовании была изучена в общей сложности 201 статья. Результат демонстрирует тот факт, что аналитика менеджмента находится в процессе становления. Анализировались два главных аспекта данной области: практикоориентированное и теоретическое исследования. Цель данной работы – определение положения аналитики менеджмента в деятельности научных сотрудников и практиков. Заключение. В статье, посвященной новой междисциплинарной области аналитики менеджмента, приводится анализ 201 печатной работы по данной теме. Впервые приведен обзор обширного списка источников информации. Приводятся современные тренды, характеристики и связанные с ними сферы применения.

Еще

Аналитика менеджмента, большие данные, бизнес-аналитика, междисциплинарная область

Короткий адрес: https://readera.org/142226983

IDR: 142226983   |   DOI: 10.15828/2075-8545-2021-13-3-181-192

Список литературы Технологические инновации и возникновение новой междисциплинарной области – аналитики менеджмента

  • Иванов Л.А., Муминова С.Р. Новые технические решения в области нанотехнологий. Часть 5 // Нанотехнологии в строительстве. – 2016. – Том 8, № 6. – С. 65–82. – DOI: 10.15828/2075-8545-2016-8-6-65-82.
  • Иванов Л.А., Муминова С.Р. Новые технические решения в области нанотехнологий. Часть 4 // Нанотехнологии в строительстве. – 2016. – Том 8, № 5. – С. 137–156. – DOI: 10.15828/2075-8545-2016-8-5-137-156.
  • Иванов Л.А., Муминова С.Р. Новые технические решения в области нанотехнологий. Часть 2 // Нанотехнологии в строительстве. – 2016. – Том 8, № 3. – С. 74-91. – DOI: 10.15828/2075-8545-2016-8-3-74-91.
  • Иванов Л.А., Муминова С.Р. Новые технические решения в области нанотехнологий. Часть 1 // Нанотехнологии в строительстве. – 2016. – Том 8, № 2. – С. 52–70. – DOI: 10.15828/2075-8545-2016-8-2-52-70.
  • Иванов Л.А., Муминова С.Р. Нанотехнологии и наноматериалы: обзор новых изобретений. Часть 1 // Нанотехнологии в строительстве. – 2017. – Том 9, № 1. – С. 88–106. – DOI: 10.15828/2075-8545-2017-9-1-88-106.
  • Иванов Л.А., Разумеев К.Э., Бокова Е.С., Муминова С.Р. Изобретения в области нанотехнологий, направленные на решение практических задач. Часть V // Нанотехнологии в строительстве. – 2019. – Том 11, № 6. – С. 719–729. – DOI: 10.15828/2075-8545-2019-11-6-719-729.
  • Иванов Л.А., Прокопьев П.С. Изобретения в области нанотехнологий, направленные на решение практических задач. Часть III // Нанотехнологии в строительстве. – 2019. – Том 11, № 3. – С. 292–303. – DOI: 10.15828/2075-8545-2019-11-3-292-303.
  • Иванов Л.А., Деменев А.В., Муминова С.Р. Изобретения в области нанотехнологий, направленные на решение практических задач. Часть II // Нанотехнологии в строительстве. – 2019. – Том 11, № 2. – С. 175–185. – DOI: 10.15828/2075-8545-2019-11-2-175-185.
  • Иванов Л.А., Борисова О.Н., Муминова С.Р. Изобретения в области нанотехнологий, направленные на решение практических задач. Часть I // Нанотехнологии в строительстве. – 2019. – Том 11, № 1. – С. 91–101. – DOI: 10.15828/2075-8545-2019-11-1-91-101.
  • Иванов Л.А., Сюй Л.Д., Бокова Е.С., Ишков А.Д., Муминова С.Р. Изобретения, основанные на использовании нанотехнологий, позволяют получить принципиально новые технические результаты. Часть V // Нанотехнологии в строительстве. – 2020. – Том 12, № 6. – С. 331–338. – DOI: 10.15828/2075-8545-2020-12-6-331-338.
  • Иванов Л.А., Капустин И.А., Борисова О.Н., Писаренко Ж.В. Изобретения, основанные на использовании нанотехнологий, позволяют получить принципиально новые технические результаты. Часть II // Нанотехнологии в строительстве. – 2020. – Том 12, № 2. – С. 71–76. – DOI: 10.15828/2075-8545-2020-12-2-71-76.
  • Иванов Л.А., Сюй Л.Д., Бокова Е.С., Ишков А.Д., Муминова С.Р. Изобретения ученых, инженеров и специалистов из разных стран в области нанотехнологий. Часть I // Нанотехнологии в строительстве. – 2021. – Том 13, № 1. – С. 23–31. – DOI: 10.15828/2075-8545-2021-13-1-23-31.
  • Иванов Л.А., Сюй Л.Д., Писаренко Ж.В., Ванг Ц., Прокопьев П.С. Изобретения ученых, инженеров и специалистов из разных стран в области нанотехнологий. Часть II // Нанотехнологии в строительстве. – 2021. – Том 13, № 2. – С. 79–89. – DOI: 10.15828/2075-8545-2021-13-2-79-89.
  • Abdirad M., Krishnan K., Gupta D. A two-stage metaheuristic algorithm for the dynamic vehicle routing problem in Industry 4.0 approach. Journal of Management Analytics. 2021; 8(1): 69–83.
  • Achi A., Salinesi C., Viscusi G. Innovation capacity and the role of information systems: a qualitative study. Journal of Management Analytics. 2016; 3(4): 333–360.
  • Adak S., Mahapatra G.S. Two-echelon imperfect production supply chain with probabilistic deterioration rework and reliability under fuzziness. Journal of Management Analytics. 2021; 1–25. Available from: doi: 10.1080/23270012.2021.1882347.
  • Akman E., Karaman A. S., Kuzey C. Visa trial of international trade: evidence from support vector machines and neural networks. Journal of Management Analytics. 2020; 7(2): 231–252.
  • Akpakpan N. E. Analytic Extensions to the Data Model for Management Analytics and Decision Support in the Big Data Environment. PhD Thesis. Walden Dissertations and Doctoral Studies. 2018.
  • Al-Refaie A. Examining factors affect supply chain collaboration in Jordanian organizations. Journal of Management Analytics. 2014; 1(4): 317–337.
  • Amini A., Alimohammadlou M. Toward equation structural modeling: an integration of interpretive structural modeling and structural equation modeling. Journal of Management Analytics. 2021; 1–22. Available from: doi: 10.1080/23270012.2021.1881927.
  • Anand A., Singhal S., Singh O. Optimal advertising duration for profit maximization. Journal of Management Analytics. 2020; 7(3): 458–480.
  • Ao J., Liu Z. What impact entrepreneurial intention? Cultural, environmental, and educational factors. Journal of Management Analytics. 2014; 1(3): 224–239.
  • Bajwa N., Fontem B., Sox C. R. Optimal product pricing and lot sizing decisions for multiple products with nonlinear demands. Journal of Management Analytics. 2016; 3(1): 43–58.
  • Bansal G., Anand A., Aggrawal D. Modeling multi-generational diffusion for competitive brands: an analysis for telecommunication industries. Journal of Management Analytics. 2021; 1–26.
  • Bansal N., Sharma A., Singh R. K. Fuzzy AHP approach for legal judgement summarization. Journal of Management Analytics. 2019; 6(3): 323–340.
  • Barth J. R., Herath H. S., Herath T. C., Xu, P. Cryptocurrency valuation and ethics: a text analytic approach. Journal of Management Analytics. 2020; 7(3): 367–388.
  • Bendoly E. Fit, bias, and enacted sensemaking in data visualization: frameworks for continuous development in operations and supply chain management analytics. Journal of Business Logistics. 2016; 37(1): 6–17.
  • Bendre M. R., Thool V. R. Analytics, challenges and applications in big data environment: a survey. Journal of Management Analytics. 2016; 3(3): 206–239.
  • Bi Z., Cochran D. Big data analytics with applications. Journal of Management Analytics. 2014; 1(4): 249–265.
  • Bradbury J.D., Guadagno R.E. Enhanced data narratives. Journal of Management Analytics. 2021; 8(2): 171–194.
  • Branger J., Pang Z. From automated home to sustainable, healthy and manufacturing home: a new story enabled by the Internet-of-Things and Industry 4.0. Journal of Management Analytics. 2015; 2(4): 314–332.
  • Carter E., Adam P., Tsakis D., Shaw S., Watson R., Ryan P. Enhancing pedestrian mobility in smart cities using big data. Journal of Management Analytics. 2020; 7(2): 173–188.
  • Celikbilek Y., Tuysuz F. An in-depth review of theory of the TOPSIS method: An experimental analysis. Journal of Management Analytics. 2020; 7(2): 281–300.
  • Chanda U., Aggarwal R. Bayesian network on labour dissonance: A social sector development challenge to India. Journal of Management Analytics. 2016; 3(1): 80–111.
  • Chanda U., Goyal P. A Bayesian network model on the interlinkage between Socially Responsible HRM, employee satisfaction, employee commitment and organizational performance. Journal of Management Analytics. 2020; 7(1): 105–138.__
  • Chanda U., Kumar A. Optimal ordering policy for short life-cycle products under credit financing with dynamic adoption in supply chain. Journal of Management Analytics. 2019; 6(3): 269–301.
  • Chen C. H., Chou C. Y., Kan C. C. Simultaneous determination of manufacturer’s process mean and production run length, and retailer’s order quantity. Journal of Management Analytics. 2016; 3(1): 59–79.
  • Chen C.H., Lo C.P., Kan C.C. Simultaneous settings of order quantity, wholesale price, production run length, process mean, and warranty period. Journal of Management Analytics. 2016; 3(2): 174–188.
  • Chen H., Li L., Chen Y. Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics. 2021; 8(1): 36–68.
  • Chen H., Xie F. How technological proximity affect collaborative innovation? An empirical study of China’s Beijing–Tianjin–Hebei region. Journal of Management Analytics. 2018; 5(4): 287–308.
  • Chen Y., Chen H., Gorkhali A., Lu Y., Ma Y., Li L. Big data analytics and big data science: a survey. Journal of Management Analytics. 2016; 3(1): 1–42.
  • Chi-Hsien K., Nagasawa S. Applying machine learning to market analysis: Knowing your luxury consumer. Journal of Management Analytics. 2019; 6(4): 404–419.
  • Chong D., Shi H. Big data analytics: a literature review. Journal of Management Analytics. 2015; 2(3): 175–201.
  • Chong, D., Shi, H., Fu, L., Ji, H., Yan, G. The impact of XBRL on information asymmetry: evidence from loan contracting. Journal of Management Analytics. 2017; 4(2): 145–158.
  • Cui Q., Jiang W. Panel data study on the appropriate proportion of personal expenses in total health expenditure in China. Journal of Management Analytics. 2018; 5(1): 18–31.
  • Das R., De P. K., Barman A. Pricing and ordering strategies in a two-echelon supply chain under price discount policy: a Stackelberg game approach. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2021.1911697.
  • Das S., Mishra S., Senapati M. Improving time series forecasting using elephant herd optimization with feature selection methods. Journal of Management Analytics. 2021; 8(1): 113–133.
  • Dedić N., Stanier C. Measuring the success of changes to Business Intelligence solutions to improve Business Intelligence reporting. Journal of Management Analytics. 2017; 4(2): 130–144.
  • Delcoure N., Carmona J. S. Enrollment management analytics: a practical framework. Journal of Applied Research in Higher Education. 2019; 11(4): 910–925.
  • Delen D., Dorokhov O., Dorokhova L., Dincer H., Yuksel S. Balanced scorecard-based analysis of customer expectations for cosmetology services: a hybrid decision modeling approach. Journal of Management Analytics. 2020; 7(4): 532–563.
  • Deleris L.A., Bagchi S., Kapoor S., Katircioglu K., Lam R., Buckley S. Simulation of adaptive project management analytics. In: 2007 Winter Simulation Conference. 2007. p. 2234-2240. IEEE.
  • Demirkan S., Demirkan I., McKee A. Blockchain technology in the future of business cyber security and accounting. Journal of Management Analytics. 2020; 7(2): 189–208.
  • de Souza Viana T. S., de Oliveira M., da Silva T. L. C., Falc ao M. S. R., Goncalves E. J. T. A message classifier based on multinomial Naive Bayes for online social contexts. Journal of Management Analytics. 2018; 5(3): 213–229.
  • Ding W., Song H. Financing the price-setting newsvendor with sales effort. Journal of Management Analytics. 2020; 7(4): 564–590.
  • Duan L., Xiong Y. Big data analytics and business analytics. Journal of Management Analytics. 2015; 2(1): 1–21.
  • Ebert D., Fisher B., Kantor P., Watters C. Introduction to Decision Support and Operational Management Analytics Minitrack. In: 2013 46th Hawaii International Conference on System Sciences. 2013. p. 1484–1484. IEEE.
  • Fan Y. Research on factors influencing an individual’s behavior of energy management: a field study in China. Journal of Management Analytics. 2017; 4(3): 203–239.
  • 58.Foroughi A., Yan G., Shi H., Chong D. A Web 3.0 ontology based on similarity: a step toward facilitating learning in the Big Data age. Journal of Management Analytics. 2015; 2(3): 216–232.
  • Ganesan, S., Uthayakumar, R. EPQ models with bivariate random imperfect proportions and learning-dependent production and demand rates. Journal of Management Analytics. 2021; 8(1): 134–170.
  • Geetha K. V., Prabha M. Effective inventory management using postponement strategy with fuzzy cost. Journal of Management Analytics, – 2021. – 1–29.
  • Ghosh P. K., Manna A. K., Dey J. K., Kar S. An EOQ model with backordering for perishable items under multiple advanced and delayed payments policies. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2021.1882348.
  • Giri B.C., Dash A. Optimal batch shipment policy for an imperfect production system under price-, advertisement- and green-sensitive demand. Journal of Management Analytics. 2021; Available from: doi: 10.1080/23270012.2021.1931495.
  • Gorkhali A., Li L., Shrestha A. Blockchain: a literature review. Journal of Management Analytics. 2020; 7(3): 321–343.
  • Gu B., Jiang W., Tan C. W. Theme: embracing the Internet of Things to drive data-driven decisions. Journal of Management Analytics. 2016; 3(1): 112–113.
  • Guo W., Straub D., Zhang P. A sea change in statistics: A reconsideration of what is important in the age of big data. Journal of Management Analytics. 2014; 1(4): 241–248.
  • Gurusinghe R. N., Arachchige B. J., Dayarathna D. Predictive HR analytics and talent management: a conceptual framework. Journal of Management Analytics. 2021; 8(2): 195–221.
  • Haenlein M., Kaplan A., Tan C. W., Zhang P. Journal of Management Analytics (Journal of Management Analytics): Special issue: artificial intelligence and management analytics. Journal of Management Analytics. 2018; 5(4): 371–372.
  • Haenlein M., Kaplan A., Tan C. W., Zhang P. Artificial intelligence (AI) and management analytics. Journal of Management Analytics. 201; 6(4): 341–343.
  • Hassani H., Huang X., Silva E. Banking with blockchained big data. Journal of Management Analytics. 2018; 5(4): 256–275.
  • He D., Yu K., Wu J. Industry characteristics, court location, and bankruptcy resolution. Journal of Management Analytics. 2020; 7(3): 389–423.
  • Hosseini S. A decision support system based on machined learned Bayesian network for predicting successful direct sales marketing. Journal of Management Analytics. 2021; 8(2): 295–315.
  • 72.Hou H., Kataev M. Y., Zhang Z., Chaudhry S., Zhu H., Fu L., Yu M. An evolving trajectory–from PD, logistics, SCM to the theory of material flow. Journal of Management Analytics. 2015; 2(2): 138–153.
  • 73.Hou J., Zhao H., Zhao X., Zhang J. Predicting mobile users’ behaviors and locations using dynamic Bayesian networks. Journal of Management Analytics. 2016; 3(3): 191–205.
  • 74.Hou J., Zhao X. Using a priority queuing approach to improve emergency department performance. Journal of Management Analytics; 2020; 7(1): 28–43.
  • 75.Hou J., Zhao X., Zheng J. The impact of consistency between the emotional feature of advertising music and brand personality on brand experience. Journal of Management Analytics. 2019; 6(3): 250–268.
  • 76.Hoyland C. A., M. Adams K., Tolk A., D. Xu L. The RQ-Tech methodology: a new paradigm for conceptualizing strategic enterprise architectures. Journal of Management Analytics. 2014; 1(1): 55–77.
  • 77.Hu W., Hou Y., Tian L., Li Y. Selection of logistics distribution center location for SDN enterprises. Journal of Management Analytics. 2015; 2(3): 202–215.
  • 78.Huang H., Ruan Y., Shaikh A., Routray R., Tan C. H., Gopisetty S. Building end-to-end management analytics for enterprise data centers. In: 2009 IFIP/IEEE International Symposium on Integrated Network Management. 2009. p. 661–675. IEEE.
  • 79.Iaksch J., Fernandes E., Borsato M. Digitalization and Big data in smart farming–a review. Journal of Management Analytics. 2021; 8(2): 333–349.
  • 80.Ianuale N., Schiavon D., Capobianco E. Smart cities and urban networks: are smart networks what we need? Journal of Management Analytics. 2015; 2(4): 285–294.
  • 81.Inegbedion H., Aghedo M. A model of vehicle replacement time with overloading cost constraint. Journal of Management Analytics. 2018; 5(4): 350–370.
  • 82.Jia H., Sheng Y., Han W., Wang X. S. Data access control in data exchanging supporting big data arena. Journal of Management Analytics. 2018; 5(3): 155–169.
  • Jiang L., Li L., Cai H., Liu H., Hu J., Xie C. A linked data-based approach for clinical treatment selecting support. Journal of Management Analytics. 2014; 1(4): 301–316.
  • Kang Y., Cai Z., Tan C. W., Huang Q., Liu H. Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics. 2020; 7(2): 139–172.
  • Karabağ O., Fadıloğlu M. M. Augmented Winter’s method for forecasting under asynchronous seasonalities. Journal of Management Analytics.2021; 8(1): 19–35 .
  • Khara B., Dey J. K., Mondal S. K. An inventory model under development cost-dependent imperfect production and reliability-dependent demand. Journal of Management Analytics, 2017; 4(3): 258–275.
  • Kim J. H. 6G and Internet of Things: a survey. Journal of Management Analytics. 2021; 8(2): 316–332.
  • Kullaya Swamy A., Sarojamma B. Bank transaction data modeling by optimized hybrid machine learning merged with ARIMA. Journal of Management Analytics. 2020; 7(4): 624–648.
  • Kumar A., Chanda U. Two-warehouse inventory model for deteriorating items with demand influenced by innovation criterion in growing technology market. Journal of Management Analytics. 2018; 5(3): 198–212.
  • Kumar P., Singh R.K., Shankar R. Efficiency measurement of fertilizer-manufacturing organizations using Fuzzy data envelopment analysis. Journal of Management Analytics. 2017; 4(3): 276–295.
  • Kuma P., Singh R. K., Sinha P. Optimal site selection for a hospital using a fuzzy extended ELECTRE approach. Journal of Management Analytics. 2016; 3(2): 115–135.
  • Kurade S. S., Latpat R. Demand and deterioration of items per unit time inventory models with shortages using genetic algorithm. Journal of Management Analytics. 2020. Available from: doi: 10.1080/23270012.2020. 1829113.
  • Lai C.T., Jackson P.R., Jiang W. Shifting paradigm to service-dominant logic via Internet-of-Things with applications in the elevators industry. Journal of Management Analytics. 2017; 4(1): 35–54.
  • Law K.S., Chung F.L. Knowledge-driven decision analytics for commercial banking. Journal of Management Analytics. 2020; 7(2): 209–230.
  • Levy R., Brodsky A., Luo J. Decision guidance framework to support operations and analysis of a hybrid renewable energy system. Journal of Management Analytics. 2016; 3(4): 285–304.
  • Li H., Mao S. Incentive equilibrium strategies of transboundary industrial pollution control under emission permit trading. Journal of Management Analytics. 2019; 6(2): 107–134.
  • Li L., Wang B., Wang A. An emergency resource allocation model for maritime chemical spill accidents. Journal of Management Analytics. 2014; 1(2): 146–155.
  • Lin Y., Zhang W. An incentive model between a contractor and multiple subcontractors in a green supply chain based on robust optimization. Journal of Management Analytics. 2020; 7(4): 481–509.
  • Lipovetsky S. Express analysis for prioritization: Best–Worst Scaling alteration to System 1. Journal of Management Analytics. 2020; 7(1): 12–27.
  • Liu F., Tan C.W., Lim E.T., Cho B. Traversing knowledge networks: an algorithmic historiography of extant literature on the Internet of Things (IoT). Journal of Management Analytics. 2017; 4(1): 3–34.
  • Liu G., Jiang R., Shao X. Coordinating contingent assistance of lateral suppliers under disruption. Journal of Management Analytics. 2019; 6(2): 135–153.
  • Liu J., Kang N., Man Y. Evidence fusion theory in healthcare. Journal of Management Analytics. 2018; 5(4): 276–286.
  • Lu Y. Blockchain and the related issues: a review of current research topics. Journal of Management Analytics. 2018; 5(4): 231–255.
  • Lu Y. Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analytics. 2019; 6(1): 1–29.
  • Lu Y., Ning X. A vision of 6G–5G’s successor. Journal of Management Analytics, - 2020; 7(3): 301–320.
  • Ma Q., Jin J., Xu Q. The evidence of dual conflict in the evaluation of brand extension: an event-related potential study. Journal of Management Analytics. 2014; 1(1): 42–54.
  • Ma Y., Chen G., Wei Q. A novel business analytics approach and case study–fuzzy associative classifier based on information gain and rule-covering. Journal of Management Analytics. 2014; 1(1): 1–19.
  • Maiti A.K. Multi-item fuzzy inventory model for deteriorating items in multi-outlet under single management. Journal of Management Analytics. 2020; 7(1): 44–68.
  • Maiti A.K. Cloudy fuzzy inventory model under imperfect production process with demand dependent production rate. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2020.1866696.
  • Malhotra D., Rishi O.P. A comprehensive review from hyperlink to intelligent technologies based personalized search systems. Journal of Management Analytics. 2019; 6(4): 365–389.
  • Mallick R.K., Manna A.K., Mondal S.K. A supply chain model for imperfect production system with stochastic lead time demand. Journal of Management Analytics. 2018; 5(4): 309–333.
  • Man Y., Huang W., Zhao W., Jiang W. Investment decisions for improving quality along supply chains. Journal of Management Analytics. 2017; 4(3): 240–257.
  • Manna A.K., Das B., Dey J.K., Mondal S.K. Multi-item EPQ model with learning effect on imperfect production over fuzzy-random planning horizon. Journal of Management Analytics. 2017; 4(1): 80–110.
  • Mazurek G., Małagocka K. Perception of privacy and data protection in the context of the development of artificial intelligence. Journal of Management Analytics. 2019; 6(4): 344–364.
  • Medalla M.E.F., Yamagishi K.D., Tiu A.M.C., Tanaid R.A.B., Abellana D.P.M., Caballes S.A.A., Ocampo L.A. Relationship mapping of consumer buying behavior antecedents of secondhand clothing with fuzzy DEMATEL. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2020.1870878.
  • Mohammadi S.S., Azar A., Ghatari A.R., Alimohammadlou M. A model for selecting green suppliers through intervalvalued intuitionistic fuzzy multi criteria decision making models. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2021.1881926.
  • Mohanty M., Shankar R. A hierarchical analytical model for performance management of integrated logistics. Journal of
  • Management Analytics. 2019; 6(2): 173–208.
  • Mohanty S., Padhy S. A novel OFS–TLBO–SVR hybrid model for optimal budget allocation of government schemes to
  • maximize GVA at factor cost. Journal of Management Analytics. 2018; 5(1): 32–53.
  • Movahedisaveji M.M., Shaukat B. Mediating role of brand app trust in the relationship between antecedents and purchase
  • intentions-Iranian B2C mobile apps. Journal of Management Analytics. 2020; 7(1): 69–104.
  • Nabhani F., Uhl C., Kauf F., Shokri A. Supply chain process optimisation via the management of variance. Journal of Management Analytics. 2018; 5(2): 136–153.
  • Nagpal G., Chanda U. Optimal inventory policies for short life cycle successive generations’ technology products. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2021.1881922.
  • Namdeo A., Khedlekar U.K., Singh P. Discount pricing policy for deteriorating items under preservation technology cost and shortages. Journal of Management Analytics. 2020; 7(4): 649–671.
  • Narayanan P., Verhagen W. J., Dhanisetty V. V. Identifying strategic maintenance capacity for accidental damage occurrence in aircraft operations. Journal of Management Analytics. 2019; 6(1): 30–48.
  • Negi R. Experience in Asset Performance Management Analytics for decision support on Transmission & Distribution Assets. 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). 2019. p. 1–6.
  • Ocampo L.A. Fuzzy analytic network process (FANP) approach in formulating infrastructural decisions of sustainable manufacturing strategy. Journal of Management Analytics. 2016; 3(3): 266–284.
  • Ocampo L.A., Vasnani N.N., Chua F.L. S., Pacio L.B.M., Galli B.J. A bi-level optimization for a make-to-order manufacturing supply chain planning: a case in the steel industry. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2020.1871431.
  • Palanivel M., Priyan S., Uthayakumar R. An inventory model with finite replenishment, probabilistic deterioration and permissible delay in payments. Journal of Management Analytics. 2015; 2(3): 254–279.
  • Palanivel M., Suganya M. Partial backlogging inventory model with price and stock level dependent demand, time varying holding cost and quantity discounts. Journal of Management Analytics. 2021; Available from: doi: 10.1080/23270012.2021.1887771.
  • Palanivel M., Sundararajan R., Uthayakumar R. Two-warehouse inventory model with non-instantaneously deteriorating items, stock-dependent demand, shortages and inflation. Journal of Management Analytics. 2016; 3(2): 152–173.
  • Palanivel M., Uthayakumar R. An EPQ model with variable production, probabilistic deterioration and partial backlogging under inflation. Journal of Management Analytics. 2014; 1(3): 200–223.
  • Pan, S. L., Li, M., Pee, L. G., Sandeep, M. S. Sustainability Design Principles for a Wildlife Management Analytics System: An Action Design Research. European Journal of Information Systems. 2020. Available from: doi: 10.1080/0960085X.2020.1811786.
  • Panigrahi B.K., Nath T.K., Senapati M.R. An application of local linear radial basis function neural network for flood prediction. Journal of Management Analytics. 2019; 6(1): 67–87.
  • Papademetriou R. A software tool for teaching management analytics in engineering courses. In: 27th European Conference on Operational Research. 2015. Available from: https://www.euro-online.org/web/pages/420/last-activity-reports.
  • Peruzzini M., Stjepandić J. Editorial to the special issue “Transdisciplinary analytics in supply chain management”. Journal of Management Analytics. 2018; 5(2): 75–80.
  • Petrenko S., Makoveichuk K., Olifirov A. New methods of the cybersecurity knowledge management analytics. In: International Conference on Convergent Cognitive Information Technologies. 2018. p. 296–310. Springer, Cham.
  • Pinheiro R. L., Landa-Silva D., Qu R., Constantino A.A., Yanaga E. An application programming interface with increased performance for optimisation problems data. Journal of Management Analytics. 2016; 3(4): 305–332.
  • Polimenis V., Neokosmidis I. The global financial crisis and its transmission to Asia Pacific. Journal of Management Analytics. 2014; 1(4): 266–284.
  • Pradhan K., Chawla P. Medical Internet of things using machine learning algorithms for lung cancer detection. Journal of Management Analytics. 2020; 7(4): 591–623.
  • Prakash J., Chin J. F. Effects of inventory classifications on CONWIP system: a case study. Journal of Management Analytics. 2017; 4(3): 296–320.
  • Priyan S., Palanivel M., Uthayakumar R. Two-echelon production-inventory system with fuzzy production rate and promotional effort dependent demand. Journal of Management Analytics. 2015; 2(1): 72–92.
  • Qabajeh I., Thabtah F., Chiclana F. A dynamic rule-induction method for classification in data mining. Journal of Management Analytics. 2015; 2(3): 233–253.
  • Qiao J., Yang Z. Mechanism of R&D network formation based on a network embeddedness game model. Journal of Management Analytics. 2015; 2(2): 154–174.
  • Rajini G., Sangamaheswary D.V. An emphasize of customer relationship management analytics in telecom industry. Indian Journal of Science and Technology. 2016; 9(32): 1–5.
  • Rehman H. U., Wan G., Ullah A., Shaukat B. Individual and combination approaches to forecasting hierarchical time series with correlated data: an empirical study. Journal of Management Analytics. 2019; 6(3): 231–249.
  • Rouhani S., Rotbei S., Shamizanjani M. Meta-synthesis of big data impacts on information systems development. Journal of Management Analytics. 2017; 4(2): 182–201.
  • Sachdeva N., Kapur P.K., Singh O. An innovation diffusion model for consumer durables with three parameters. Journal of Management Analytics. 2016; 3(3): 240–265.
  • Santos M.Y., Martinho B., Costa C. Modelling and implementing big data warehouses for decision support. Journal of Management Analytics. 2017; 4(2): 111–129.
  • Shahi S. K., Dia M. Comparison of Ontario’s roundwood and 2017 recycled fibre pulp and paper mills’ performance using data Envelopment analysis. Journal of Management Analytics. 2021; 8(2): 222–251.
  • Sharbini H., Sallehuddin R., Haron H. Crowd evacuation simulation model with soft computing optimization techniques: a systematic literature review. Journal of Management Analytics. 2021. Available from: doi: 10.1080/23270012.2021.1881924.
  • Sharma S. K., Chanda U. Developing a Bayesian belief network model for prediction of R&D project success. Journal of Management Analytics. 2017; 4(3): 321–344.
  • Shen X., Jiang, W. Multivariate normal spatial scan statistic for detecting the most severe cluster of a disease. Journal of Management Analytics. 2014; 1(2): 130–145.
  • Shi H., Chong D., Yan G., He W. A semantic query-based approach for management decision-making. Journal of Management Analytics. 2015; 2(1): 53–71.
  • Shi H., Ma, Z., Chong D., He W. The impact of Facebook on real estate sales. Journal of Management Analytics. 2020; 8(1): 101–112.
  • Sokolova M.V., Gomez F.J., Borisoglebskaya L.N. Migration from an SQL to a hybrid SQL/NoSQL data model. Journal of Management Analytics. 2020; 7(1): 1–11.
  • Solomon S., Ellegood W. A., Pannirselvam G., Riley J. A decision support model for supplier portfolio selection in the retail industry. Journal of Management Analytics. 2021; Available from: doi: 10.1080/23270012.2021.1882349.
  • Sousa S., Rodrigues N., Nunes E. Evolution of process capability in a manufacturing process. Journal of Management Analytics. 2018; 5(2): 95–115.
  • Srinivasa K. G., Anupindi S., Kumar A. Analytics on medical records collected from a distributed system deployed in the Indian rural demographic. Journal of Management Analytics. 2018; 5(1): 54–72.
  • Srivastava P. R., Sharma S., Kaur S. Data mining-based algorithm for assortment planning. Journal of Management Analytics. 2020; 7(3): 443–457.
  • Sundara Rajan R., Uthayakumar R. Analysis and optimization of an EOQ inventory model with promotional efforts and back ordering under delay in payments. Journal of Management Analytics. 2017; 4(2): 159–181.
  • Sundararajan R., Prabha M., Jaya R. An inventory model for non-instantaneous deteriorating items with multivariate demand and backlogging under inflation. Journal of Management Analytics. 2019; 6(3): 302–322.
  • Sundararajan R., Vaithyasubramanian S., Nagarajan A. Impact of delay in payment, shortage and inflation on an EOQ model with bivariate demand. Journal of Management Analytics. 2021; 8(2): 267–294.
  • Tan C.W., Jiang W., Gu B. Guest Editorial: Special issue on embracing the Internet of Things to drive data-driven decisions. Journal of Management Analytics. 2017; 4(1): 1–2.
  • Tang J., Yan C., Fung R.Y. Optimal appointment scheduling with no-shows and exponential service time considering overtime work. Journal of Management Analytics. 2014; 1(2): 99–129.
  • Teixeira C., Lopes I., Figueiredo M. Classification methodology for spare parts management combining maintenance and logistics perspectives. Journal of Management Analytics. 2018; 5(2): 116–135.
  • Tung K. AI. The internet of legal things, and lawyers. Journal of Management Analytics. 2019; 6(4): 390–403.
  • Ullah A., Jiang W. Optimal periodic replacement policy for a warranted product subject to multi modes failure process. Journal of Management Analytics. 2019; 6(2): 154–172.
  • Ullah Ibne Hossain N., Nagahi M., Jaradat R., Stirgus E., Keating, C.B. The effect of an individual’s education level on their systems skills in the system of systems domain. Journal of Management Analytics. 2020; 7(4): 510–531.
  • Vafeiadis T., Dimitriou N., Ioannidis D., Wotherspoon T., Tinker G., Tzovaras D. A framework for inspection of dies attachment on PCB utilizing machine learning techniques. Journal of Management Analytics. 2018; 5(2): 81–94.
  • Vaghefi I., Lapointe L., Shahbaznezhad H. A multilevel process view of organizational knowledge transfer: enablers versus barriers. Journal of Management Analytics. 2018; 5(1): 1–17.
  • Verma N., Malhotra D., Singh J. Big data analytics for retail industry using MapReduce-Apriori framework. Journal of Management Analytics. 2020; 7(3): 424–442.
  • Verma N., Singh J. A comprehensive review from sequential association computing to Hadoop-MapReduce parallel computing in a retail scenario. Journal of Management Analytics. 2017; 4(4): 359–392.
  • Voltolini R., Vasconcelos K., Borsato M., & Peruzzini M. Product development cost estimation through ontological models – a literature review. Journal of Management Analytics. 2019; 6(2): 209–229.
  • Wang X., Chen X., Bi Z. Support vector machine and ROC curves for modeling of aircraft fuel consumption. Journal of Management Analytics. 2015; 2(1): 22–34.
  • Wang, Y., Ji, W., Chaudhry, S. S. A hybrid approach for the evaluation of supermarket food safety. Journal of Management Analytics. 2014; 1(2): 156–167.
  • Wei C., Li Z., Zou Z. Ordering policies and coordination in a two-echelon supply chain with Nash bargaining fairness concerns. Journal of Management Analytics. 2017; 4(1): 55–79.
  • Wipulanusat W., Panuwatwanich K., Stewart R. A., Arnold S. L., Wang J. Bayesian network revealing pathways to workplace innovation and career satisfaction in the public service. Journal of Management Analytics. 2020; 7(2): 253–280.
  • Xiao Z., Lin Z., Li S. Expected return, time-varying risk, and hedging demand in the US REITs market. Journal of Management Analytics. 2014; 1(1): 78–98.
  • Xu B., Li L., Hu D., Wu B., Ye C., Cai H. Healthcare data analysis system for regional medical union in smart city. Journal of Management Analytics. 2018; 5(4): 334–349.
  • Xu B., Xu K., Fu L., Li L., Xin W., Cai H. Healthcare data analytics: Using a metadata annotation approach for integrating electronic hospital records. Journal of Management Analytics. 2016; 3(2): 136–151.
  • Xu, Y., Park, Y. S., Park, J. D., Cho, W. Evaluating the environmental efficiency of the US airline industry using a directional distance function DEA approach. Journal of Management Analytics. 2021; 8(1): 1–18.
  • Yan G., He W., Shi H., Rawat D.B. Applying a bilingual model to mine e-commerce satisfaction sentiment. Journal of Management Analytics. 2014;1(4): 285–300.
  • Yan H., Xu L. D., Bi Z., Pang Z., Zhang J., Chen Y. An emerging technology–wearable wireless sensor networks with applications in human health condition monitoring. Journal of Management Analytics. 2015; 2(2): 121–137.
  • Yang J., Yu K. The role of an integrated logistics and procurement service offered by a 3PL firm in supply chain. Journal of Management Analytics. 2019; 6(1): 49-66.
  • Yang M., Wan G., Zheng E. A predictive DEA model for outlier detection. Journal of Management Analytics. 2014; 1(1): 20–41.
  • Yang Z., Kong P., Li B., Chao B. A compartment model and numerical analysis of circulatory economy. Journal of Management Analytics. 2019; 6(1): 88–105.
  • Ye J. Entropy measures of simplified neutrosophic sets and their decision-making approach with positive and negative arguments. Journal of Management Analytics. 2021; 8(2): 252–260.
  • Yu H., Wang P., Zheng H., Luo J., Liu J. Impacts of congestion on healthcare outcomes: an empirical observation in China. Journal of Management Analytics. 2020; 7(3): 344–366.
  • Yu K., He D. The choice between bankruptcy liquidation and bankruptcy reorganization: a model and evidence. Journal of Management Analytics. 2018; 5(3): 170–197.
  • Yu Y., Madiraju S. Enterprise Application Transformation Strategy and Roadmap Design: A Business Value Driven and IT Supportability Based Approach. In: 2014 Enterprise Systems Conference. 2014. p. 66–71.
  • Yu Y., Madiraju S. Enterprise Application Transformation Strategy and Roadmap Design: A Business Value Driven and IT Supportability-Based Approach. Journal of Management Analytics. 2015; 2(2): 111–120.
  • Zelenkov Y. Critical regular components of IT strategy: Decision making model and efficiency measurement. Journal of Management Analytics. 2015; 2(2): 95–110.
  • Zhang S., Hingle A. The evolution of news and media website design: trend analysis of rich media, social sharing, and ad placements. Journal of Management Analytics. 2017; 4(4): 345–358.
  • Zhang W., Xiang Y., Liu X., Zhang P. Domain ontology development of knowledge base in cardiovascular personalized health management. Journal of Management Analytics. 2019; 6(4): 420–455.
  • Zhang Z., Jasimuddin S. M. A model-based analysis for mobile knowledge management in organizations. Journal of Management Analytics. 2015; 2(1): 35–52.
  • Zhang Z., Zhang P. Seeing around the corner: an analytic approach for predictive maintenance using sensor data. Journal of Management Analytics. 2015; 2(4): 333–350.
  • Zhao J.L., Fan S., Hu D. Business challenges and research directions of management analytics in the big data era. Journal of Management Analytics. 2014; 1(3): 169–174.
  • Zhao X., Hou J. Analyzing the time buffer in the Theory of Constraints based lean operations. Journal of Management Analytics. 2014; 1(3): 185–199.
  • Zheng Z. Introduction to big data analytics and the special issue on big data methods and applications. Journal of Management Analytics. 2015; 2(4): 281–284.
  • Zhou S., Wan G., Zhang P., Li Y. Optimal quality level, order quantity and selling price for the retailer in a two-level supply chain. Journal of Management Analytics. 2014; 1(3): 175–184.
  • Zhou S., Zhan, Y. A new method for performance evaluation of decision-making units with application to service industry. Journal of Management Analytics. 2021; 8(1): 84–100.
  • Zou H., Chen H. M., Dey S. Exploring user engagement strategies and their impacts with social media mining: the case of public libraries. Journal of Management Analytics. 2015; 2(4): 295–313.
Еще
Статья научная