ROR1 and BMI-1 proteins as potential predictors of the effectiveness of hormone therapy in luminal breast cancer

Автор: Tarakanova V.O., Krakhmal N.V., Patalyak S.V., Tarasov M.N., Babyshkina N.N., Vtorushin S.V.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Обзоры

Статья в выпуске: 3 т.21, 2022 года.

Бесплатный доступ

The purpose of the study was to generalize information regarding the molecular and biological mechanisms involved in the resistance to endocrine therapy with aromatase inhibitors in patients with luminal breast cancer. material and methods. the literature search was conducted using medline, cochrane library, elibrary and pubmed databases. results. the review highlights the results of international studies on molecular and biological characteristics of breast tumors and their relationship with the effectiveness of hormone therapy. particular attention was paid to the description of modern studies on RoR1 and Bmi-1 proteins and their contribution to the development of tumor resistance to treatment. conclusion. the analysis of the world literature confirms the relevance of studying the molecular and genetic characteristics of tumor tissue in patients with luminal breast cancer. the data obtained were compared to the clinical course and response to hormone therapy in order to standardize them for implementation in everyday practice as the “gold standard of diagnosis”.

Еще

Breast cancer, luminal subtypes, adjuvant hormone therapy

Короткий адрес: https://sciup.org/140295071

IDR: 140295071   |   DOI: 10.21294/1814-4861-2022-21-3-135-142

Список литературы ROR1 and BMI-1 proteins as potential predictors of the effectiveness of hormone therapy in luminal breast cancer

  • Siegel R.L., Jakubowski C.D., Fedewa S.A., Davis A., Azad N.S. Colorectal cancer in the young: epidemiology, prevention, management. Am Soc Clin Oncol Educ Book. 2020; 40: 1-14. doi: 10.1200/ EDBK_279901.
  • S0rlie T., Perou C.M., TibshiraniR., Aas T., Geisler S., JohnsenH., Hastie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Thorsen T., Quist H., Matese J.C., Brown P.O., Botstein D., L0nning P.E., B0rresen-Dale A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001; 98(19): 10869-74. doi: 10.1073/pnas.191367098.
  • Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis ofthe randomised trials. Lancet. 2015; 386(10001): 1341-52. doi: 10.1016/S0140-6736(15)61074-1.
  • Araki K., Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer. 2018; 25(4): 392-401. doi: 10.1007/s12282-017-0812-x.
  • ZhaoH., ZhouL., ShangguanA.J., BulunS.E. Aromatase expression and regulation in breast and endometrial cancer. J Mol Endocrinol. 2016; 57(1): 19-33. doi: 10.1530/JME-15-0310.
  • Gustin J.P., Miller J., Farag M., Rosen D.M., Thomas M., Scharpf R.B., Lauring J. GATA3 frame shift mutation promotes tumor growth in human luminal breast cancer cells and induces transcriptional changes seen in primary GATA3 mutant breast cancers. Oncotarget. 2017; 8(61): 103415-427. doi: 10.18632/oncotarget.21910.
  • EmmanuelN., LofgrenK.A., PetersonE.A., Meier D.R., JungE.H., Kenny P.A. Mutant GATA3 Actively Promotes the Growth of Normal and Malignant Mammary Cells. Anticancer Res. 2018; 38(8): 4435-41. doi: 10.21873/anticanres.12745.
  • Ellis M.J., Ding L., Shen D., Luo J., Suman V.J., Wallis J.W., Van TineB.A.,HoogJ., GoiffonR.J., GoldsteinT.C., NgS., LinL., CrowderR., Snider J., Ballman K., Weber J., Chen K., Koboldt D.C., Kandoth C., Schierding W.S., McMichael J.F., Miller C.A., Lu C., Harris C.C., McLellan M.D., Wendl M.C., DeSchryver K., Allred D.C., Esserman L., Unzeitig G., Margenthaler J., Babiera G.V., Marcom P.K., Guenther J.M., Leitch M., Hunt K., Olson J., Tao Y., Maher C.A., Fulton L.L., Fulton R.S., Harrison M., Oberkfell B., Du F., Demeter R., Vickery T.L., ElhammaliA., Piwnica-WormsH., McDonaldS., WatsonM., DoolingD.J., Ota D., Chang L.W., Bose R., Ley T.J., Piwnica-Worms D., Stuart J.M., Wilson R.K., Mardis E.R. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012; 486(7403): 353-60. doi: 10.1038/nature11143.
  • Gonzalez R.S., Wang J., Kraus T., Sullivan H., Adams A.L., Cohen C. GATA-3 expression in male and female breast cancers: comparison of clinicopathologic parameters and prognostic relevance. Hum Pathol. 2013; 44(6): 1065-70. doi: 10.1016/j.humpath.2012.09.010.
  • Hurtado A., Holmes K.A., Ross-Innes C.S., Schmidt D., Carroll J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011; 43(1): 27-33. doi: 10.1038/ng.730.
  • Ma C.X., Reinert T., Chmielewska I., Ellis M.J. Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 2015; 15(5): 261-75. doi: 10.1038/nrc3920.
  • GeneraliD, Bates G., BerrutiA., BrizziM.P., CampoL., Bonardi S., Bersiga A., Allevi G., Milani M., Aguggini S., Dogliotti L., Banham A.H., Harris A.L., Bottini A., Fox S.B. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res. 2009; 15(3): 1046-51. doi: 10.1158/1078-0432.CCR-08-1507.
  • De A. Wnt/Ca21 signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2011; 43(10): 745-56. doi: 10.1093/ abbs/gmr079.
  • Cai X., Yao Z., Li L., Huang J. Role of DKK4 in Tumorigenesis and Tumor Progression. Int J Biol Sci. 2018; 14(6): 616-21. doi: 10.7150/ ijbs.24329.
  • Hasan K., Widhopf 2nd G.F., Zhang S., Lam S.M., Shen Z., Briggs S.P., Parker B.A., Kipps T.J. Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis. NPJ Breast Cancer. 2019; 5: 35. doi: 10.1038/s41523-019-0131-9.
  • Zhang S., Zhang H., Ghia E.M., Huang J., Wu L., Zhang J., Lam S., Lei Y., He J., Cui B., Widhopf 2nd G.F., Yu J., Schwab R., Messer K., Jiang W., Parker B.A., Carson D.A., Kipps T.J. Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody. Proc Natl Acad Sci USA. 2019; 116(4): 1370-7. doi: 10.1073/pnas.1816262116.
  • Karvonen H., Barker H., Kaleva L., Niininen W., Ungureanu D. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells. 2019; 8(8): 812. doi: 10.3390/cells8080812.
  • BorcherdingN., KusnerD., Liu G.H., Zhang W. ROR1, an embryonic protein with an emerging role in cancer biology. Protein Cell. 2014; 5(7): 496-502. doi: 10.1007/s13238-014-0059-7.
  • Balakrishnan A., Goodpaster T., Randolph-Habecker J., Hoffstrom B.G., Jalikis F.G., Koch L.K., Berger C., Kosasih P.L., Rajan A., Sommermeyer D., Porter P.L., Riddell S.R. Analysis of ROR1 Protein Expression in Human Cancer and Normal Tissues. Clin Cancer Res. 2017; 23(12): 3061-71. doi: 10.1158/1078-0432.CCR-16-2083.
  • Zhang S., Zhao X., Zhang D. Cellular and molecular immunop-athogenesis of ulcerative colitis. Cell Mol Immunol. 2014; 11(3): 314. doi: 10.1038/cmi.2014.18.
  • Saleh R.R., Antrás J.F., Peinado P., Pérez-Segura P., Pandiella A., AmirE., Ocaña A. Prognostic value of receptor tyrosine kinase-like orphan receptor (ROR) family in cancer: A meta-analysis. Cancer Treat Rev. 2019; 77: 11-9. doi: 10.1016/j.ctrv.2019.05.006.
  • Gonzalez-Angulo A.M., Timms K.M., Liu S., Chen H., Litton J.K., Potter J., Lanchbury J.S., Stemke-Hale K., Hennessy B.T., Arun B.K., Hortobagyi G.N., Do K.A., Mills G.B., Meric-Bernstam F. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 2011; 17(5): 1082-9. doi: 10.1158/1078-0432.CCR-10-2560.
  • Li C., Wang S., Xing Z., Lin A., Liang K., Song J., Hu Q., Yao J., Chen Z., Park P.K., Hawke D.H., Zhou J., Zhou Y., Zhang S., Liang H., HungM.C., GallickG.E., HanL., Lin C., YangL. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol. 2017; 19(2): 106-19. doi: 10.1038/ncb3464.
  • Cao J., Wang X., Dai T., Wu Y., Zhang M., Cao R., Zhang R., Wang G., Jiang R., Zhou B.P., Shi J., Kang T. Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1. Theranostics. 2018; 8(10): 2739-51. doi: 10.7150/thno.21477.
  • Hammer A., Laghate S., DiakonovaM. Src tyrosyl phosphorylates cortactin in response to prolactin. Biochem Biophys. Res. Commun. 2015; 463: 644-9. doi: 10.1016/j.bbrc.2015.05.116.
  • Pandey G., Borcherding N., Kolb R., Kluz P., Li W, Sugg S., Zhang J., Lai D.A., Zhang W. ROR1 Potentiates FGFR Signaling in Basal-Like Breast Cancer. Cancers (Basel). 2019; 11(5): 718. doi: 10.3390/ cancers11050718.
  • Fultang N., Illendula A., Lin J., Pandey M.K., Klase Z., Peetham-baranB. ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efflux pump ABCB1. Sci Rep. 2020; 10(1): 1821. doi: 10.1038/ s41598-020-58864-0.
  • Yu J., Chen L., Cui B., Widhopf G.F. 2nd, Shen Z., Wu R., Zhang L., Zhang S., Briggs S.P., Kipps T.J. Wnt5a induces ROR1/ROR2 heteroo-ligomerization to enhance leukemia chemotaxis and proliferation. J Clin Invest. 2016; 126(2): 585-98. doi: 10.1172/JCI83535.
  • Faiao-FloresF., EmmonsM.F., DuranteM.A., KinoseF., SahaB., Fang B., Koomen J.M., Chellappan S.P., Maria-Engler S.S., Rix U., Licht J.D., Harbour J. W., Smalley K.S.M. HDAC Inhibition Enhances the In Vivo Efficacy of MEK Inhibitor Therapy in Uveal Melanoma. Clin Cancer Res. 2019; 25(18): 5686-5701. doi: 10.1158/1078-0432.CCR-18-3382.
  • Hoeflich K.P., Guan J., Edgar K.A., O'Brien C., Savage H., Wilson T.R., Neve R.M., Friedman L.S., Wallin J.J. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase. Genes Cancer. 2016; 7(3-4): 73-85. doi: 10.18632/ genesandcancer.100.
  • Baselga J., Campone M., Piccart M., Burris H.A., Rugo H.S., Sahmoud T., Noguchi S., GnantM., PritchardK.I., LebrunF., Beck J.T., Ito Y., Yardley D., Deleu I., Perez A., Bachelot T., Vittori L., Xu Z., Mukho-padhyay P., LebwohlD., Hortobagyi G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012; 366(6): 520-9. doi: 10.1056/NEJMoa1109653.
  • Gray F, Cho H.J., Shukla S., He S., Harris A., Boytsov B., Jaremko L., Jaremko M., Demeler B., Lawlor E.R., Grembecka J., Cierpicki T. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat Commun. 2016; 7: 13343. doi: 10.1038/ ncomms13343.
  • Claude-Taupin A., Boyer-Guittaut M., Delage-Mourroux R., Hervouet E. Use of epigenetic modulators as a powerful adjuvant for breast cancer therapies. Methods Mol Biol. 2015; 1238: 487-509. doi: 10.1007/978-1-4939-1804-1_25.
  • Kreso A., van Galen P., Pedley N.M., Lima-Fernandes E., Frelin C., Davis T., CaoL., BaiazitovR., Du W., SydorenkoN., Moon Y.C., GibsonL., Wang Y., Leung C., Iscove N.N., Arrowsmith C.H., Szentgyorgyi E., Gallinger S., Dick J.E., O'Brien C.A. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014; 20(1): 29-36. doi: 10.1038/ nm.3418.
  • Bolomsky A., Schlangen K., Schreiner W., Zojer N., Ludwig H. Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment. J Hematol Oncol. 2016; 9: 17. doi: 10.1186/s13045-016-0247-4.
  • Darwish N.H., Sudha T., Godugu K., Elbaz O., Abdelghaf-far H.A., Hassan E.E., Mousa S.A. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1. Oncotarget. 2016; 7(36): 57811-20. doi: 10.18632/ oncotarget.11063.
  • SahasrabuddheA.A. BMI1: A Biomarker of Hematologic Malignancies. Biomark Cancer. 2016; 8: 65-75. doi: 10.4137/BIC.S33376.
  • Althobiti M., Muftah A.A., Aleskandarany M.A., Joseph C., Toss M.S., Green A., Rakha E. The prognostic significance of BMI1 expression in invasive breast cancer is dependent on its molecular subtypes. Breast Cancer Res Treat. 2020; 182(3): 581-9. doi: 10.1007/s10549-020-05719-x.
Еще
Статья научная