Регуляторные Т-клетки при ишемическом инсульте: маленький ключ от большой «музыкальной шкатулки»

Автор: Жукова О.А., Чудакова Д.А., Белопасов В.В., Ширшова Е.В., Баклаушев В.П., Юсубалиева Г.М.

Журнал: Клиническая практика @clinpractice

Рубрика: Научные обзоры

Статья в выпуске: 3 т.14, 2023 года.

Бесплатный доступ

Ишемический инсульт - глобальная медицинская проблема и одна из основных причин смертности и инвалидности во всём мире. Основным направлением терапии ишемического инсульта в острейшем периоде, способным предотвратить или минимизировать развитие неврологического дефицита, является восстановление кровотока в ишемизированной ткани мозга с помощью ферментативного тромболизиса или эндоваскулярной тромбоэкстракции. В случаях, когда терапевтическое окно упущено, важное значение в судьбе ишемизированных нейронов в зоне пенумбры может иметь модуляция иммунного ответа с целью подавления системной воспалительной реакции. Ключевую роль в этом процессе играют T-регуляторные клетки - иммуносупрессивная популяция CD4+ T-клеток, имеющая фенотип CD4+, CD25+ CD127low, FoxP3+. Несмотря на отдельные сообщения о том, что Treg (или их определённые субпопуляции) могут усугублять микроциркуляторные нарушения в ишемизированной ткани, большинство исследователей убеждены в позитивной роли Treg при ишемическом инсульте. Резидентные CD69+ Treg, обнаруженные в нормальном мозге млекопитающих, обладают нейропротективной активностью, вырабатывают IL-10 и другие противоспалительные цитокины, контролируют астроглиоз и подавляют цитотоксические субпопуляции Т-клеток и микроглии. Системное введение Treg при инсульте сопровождается уменьшением объёма инфаркта мозга и упреждением вторичной гибели нейронов. Возможность активировать и наращивать Treg ex vivo открывает широкие перспективы по иммунокоррекции не только при системных и аутоиммунных заболеваниях: потенциально эта технология может быть применима в качестве нейропротективной терапии при ишемическом инсульте. Связь Treg, воспаления и цереброваскулярной патологии особенно показательна на примере развития ишемического инсульта на фоне COVID-19. Показано, что системное воспаление, обусловленное инфицированием SARS-CoV-2, приводит к значительному угнетению Treg, что сопровождается повышенным риском развития ишемического инсульта и других неврологических осложнений. Обобщённые сведения о возможном терапевтическом потенциале Treg при цереброваскулярной патологии могут представлять практический интерес не только для исследователей, но и для клиницистов.

Еще

Treg, регуляторные т-клетки, ишемический инсульт, covid-19, биомаркеры

Короткий адрес: https://sciup.org/143180551

IDR: 143180551   |   DOI: 10.17816/clinpract568210

Список литературы Регуляторные Т-клетки при ишемическом инсульте: маленький ключ от большой «музыкальной шкатулки»

  • Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global stroke fact sheet 2022. Int J Stroke. 2022;17(1): 18–29. doi: 10.1177/17474930211065917
  • Sakai S, Shichita T. Inflammation and neural repair after ischemic brain injury. Neurochem Int. 2019;(130):104316. doi: 10.1016/j.neuint.2018.10.013
  • Федин А.И., Бадалян К.Р. Обзор клинических рекомендаций лечения и профилактики ишемического инсульта // Журнал неврологии и психиатрии им. С.С. Корсакова. 2019. Т. 119, № 8-2. С. 95–100. [Fedin AI, Badalyan KR. Review of clinical recommendations for the treatment and prevention of ischemic stroke. J Neurology Psychiatry named after S.S. Korsakov. 2019;119(8-2):95–100. (In Russ).] doi: 10.17116/jnevro201911908295
  • Alim I, Caulfield JT, Chen Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177(5):1262–1279. doi: 10.1016/j.cell.2019.03.032
  • Zhang SR, Phan TG, Sobey CG. Targeting the immune system for ischemic stroke. Trends Pharmacol Sci. 2021;42(2):96–105. doi: 10.1016/j.tips.2020.11.010
  • Воробьев С.В., Янишевский С.Н., Кудрявцев И.В., и др. Участие иммунного ответа в патогенезе ишемического инсульта // Медицинский совет. 2023. № 3. С. 8–16. [Vorobyev SV, Yanishevsky SN, Kudryavtsev IV, et al. Involvement of the immune response in the pathogenesis of ischemic stroke. Medical Advice. 2023;(3):8–16. (In Russ).]
  • Thapa K, Shivam K, Khan H, et al. Emerging targets for modulation of immune response and inflammation in stroke. Neurochem Res. 2023;48(6):1663–1690. doi: 10.1007/s11064-023-03875-2
  • Lifshitz GV, Zhdanov DD, Lokhonina AV, et al. Ex vivo expanded regulatory T cells CD4+CD25+FoxP3+CD127Low develop strong immunosuppressive activity in patients with remitting-relapsing multiple sclerosis. Autoimmunity. 2016;49(6):388–396. doi: 10.1080/08916934.2016.1199020
  • Brea D, Agulla J, Rodríguez-Yáñez M, et al. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. J Cell Mol Med. 2014;18(8): 1571–1579. doi: 10.1111/jcmm.12304
  • Olson KE, Mosley RL, Gendelman HE. The potential for Tregenhancing therapies in nervous system pathologies. Clin Exp Immunol. 2023;211(2):108–121. doi: 10.1093/cei/uxac084
  • Kleinschnitz C, Kraft P, Dreykluft A, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–691. doi: 10.1182/blood-2012-04-426734
  • Selvaraj UM, Stowe AM. Long-term T cell responses in the brain after an ischemic stroke. Discovery Med. 2017;24(134):323.
  • Wu Y, Li J, Shou J, et al. Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol. 2021; (343):113782. doi: 10.1016/j.expneurol.2021.113782
  • Malviya V, Yshii L, Junius S, et al. Regulatory T‐cell stability and functional plasticity in health and disease. Immunol Cell Biol. 2023;101(2):112–129. doi: 10.1111/imcb.12613
  • Mao L, Li P, Zhu W, et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain. 2017;140(7):1914–1931. doi: 10.1093/brain/awx111
  • Yuan C, Shi L, Sun Z, et al. Regulatory T cell expansion promotes white matter repair after stroke. Neurobiol Dis. 2023;(179):106063. doi: 10.1016/j.nbd.2023.106063
  • Sarvari S, Moakedi F, Hone E, et al. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 2020;35(6):851–868. doi: 10.1007/s11011-020-00573-8
  • Nikolic D, Jankovic M, Petrovic B, Novakovic I. Genetic aspects of inflammation and immune response in stroke. Int J Mol Sci. 2020;21(19):7409. doi: 10.3390/ijms21197409
  • Rayasam A, Hsu M, Kijak JA, et al. Immune responses in stroke: How the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology. 2018;154(3):363–376. doi: 10.1111/imm.12918
  • Tobin MK, Bonds JA, Minshall RD, et al. Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. J Cereb Blood Flow Metab. 2014;34(10): 1573–1584. doi: 10.1038/jcbfm.2014.130
  • Rustenhoven J, Drieu A, Mamuladze T, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell. 2021;184(4):1000–1016.e27. doi: 10.1016/j.cell.2020.12.040
  • Fan X, Chen H, Jiang F, et al. Comprehensive analysis of cuproptosis- related genes in immune infiltration in ischemic stroke. Front Neurol. 2023;(13):1077178. doi: 10.3389/fneur.2022.1077178
  • Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 2022;(42):259–305. doi: 10.1002/med.21817
  • Yang K, Zhang Z, Liu X, et al. Identification of hypoxia-related genes and exploration of their relationship with immune cells in ischemic stroke. Sci Rep. 2023;13(1):10570. doi: 10.1038/s41598-023-37753-2
  • Mao R, Zong N, Hu Y, et al. Neuronal death mechanisms and therapeutic strategy in ischemic stroke. Neurosci Bull. 2022;38(10):1229–1247. doi: 10.1007/s12264-022-00859-0
  • Samoilova EM, Yusubalieva GM, Belopasov VV, et al. Infections and inflammation in the development of stroke. J Neurology Psychiatry named after S.S. Korsakov. 2021;121(8-2):11‑21. (In Russ). doi: 10.17116/jnevro202112108211
  • Han L, Wang Z, Yuan J, et al. Circulating leukocyte as an inflammatory biomarker: Association with fibrinogen and neuronal damage in acute ischemic stroke. J Inflamm Res. 2023;(16):1213–1226. doi: 10.2147/JIR.S399021
  • Seifert HA, Vandenbark AA, Offner H. Regulatory B cells in experimental stroke. Immunology. 2018;154(2):169–177. doi: 10.1111/imm.12887
  • Ito M, Komai K, Mise-Omata S, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565(7738):246–250. doi: 10.1038/s41586-018-0824-5
  • Astarita JL, Dominguez CX, Tan C, et al. Treg specialization and functions beyond immune suppression. Clin Exp Immunol. 2023;211(2):176–183. doi: 10.1093/cei/uxac123
  • Wang Y, Sadike D, Huang B, et al. Regulatory T cells alleviate myelin loss and cognitive dysfunction by regulating neuroinflammation and microglial pyroptosis via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination. J Neuroinflammation. 2023;20(1):41. doi: 10.1186/s12974-023-02721-0
  • Bluestone JA, McKenzie BS, Beilke J, Ramsdell F. Opportunities for Treg cell therapy for the treatment of human disease. Front Immunol. 2023;(14):1166135. doi: 10.3389/fimmu.2023.1166135
  • Li Y, McBride DW, Tang Y, et al. Immunotherapy as a treatment for stroke: Utilizing regulatory T cells. Brain Hemorrhages. 2023. doi: 10.1016/j.hest.2023.02.003
  • Zhang Y, Liesz A, Li P. Coming to the rescue: Regulatory T cells for promoting recovery after ischemic stroke. Stroke. 2021;52(12):e837–e841. doi: 10.1161/STROKEAHA.121.036072
  • Qiao C, Liu Z, Qie S. The Implications of microglial regulation in neuroplasticity-dependent stroke recovery. Biomolecules. 2023;13(3):571. doi: 10.3390/biom13030571
  • Ruhnau J, Schulze J, von Sarnowski B, et al. Reduced numbers and impaired function of regulatory T cells in peripheral blood of ischemic stroke patients. Mediators Inflamm. 2016;2016:2974605. doi: 10.1155/2016/2974605
  • Thornton AM, Lu J, Korty PE, et al. Helios+ and Helios- Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires. Eur J Immunol. 2019;49(3):398–412. doi: 10.1002/eji.201847935
  • Thornton AM, Korty PE, Tran DQ, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymicderived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184(7):3433–3441. doi: 10.4049/jimmunol.0904028
  • Reinhardt J, Sharma V, Stavridou A, et al. Distinguishing activated T regulatory cell and T conventional cells by singlecell technologies. Immunology. 2022;166(1):121–137. doi: 10.1111/imm.13460
  • Mishra S, Srinivasan S, Ma C, Zhang N. CD8+ regulatory T cell: A mystery to be revealed. Front Immunol. 2021;(12):708874. doi: 10.3389/fimmu.2021.708874
  • Zhang B, Zhang X, Tang FL, et al. Clinical significance of increased CD4+ CD25- Foxp3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis. 2008;67(7):1037–1040. doi: 10.1136/ard.2007.083543
  • Liston A, Dooley J, Yshii L. Brain-resident regulatory T cells and their role in health and disease. Immunol Letters. 2022;(248): 26–30. doi: 10.1016/j.imlet.2022.06.005
  • Khantakova JN, Bulygin AS, Sennikov SV. The regulatory T-cell memory phenotype: What we know. Cells. 2022;11(10):1687. doi: 10.3390/cells11101687
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nature Immunol. 2003;4(4):330–336. doi: 10.1038/ni904
  • Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007;445(7129):766–770. doi: 10.1038/nature05479
  • Husebye ES, Anderson MS, Kämpe O. Autoimmune polyendocrine syndromes. N Engl J Med. 2018;378(12):1132–1141. doi: 10.1056/NEJMra1713301
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–1061. doi: 10.1126/science.1079490
  • Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus. Nat Rev Immunol. 2012;12(3):157–167. doi: 10.1038/nri3155
  • Allan SE, Passerini L, Bacchetta R., et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest. 2005;115(11):3276–3284. doi: 10.1172/JCI24685
  • Mailer RK, Falk K, Rotzschke O. Absence of leucine zipper in the natural FOXP3D2D7 isoform does not affect dimerization but abrogates suppressive capacity. PLoS One. 2009;4(7):e6104. doi: 10.1371/journal.pone.0006104
  • Донецкова А.Д., Литвина М.М., Смирнов Д.С., и др. Сравнение экспрессии изоформ молекулы FOXP3 регуляторными Т-клетками периферической крови при аллергических и лимфопролиферативных заболеваниях // Русский медицинский журнал. 2020. Т. 4, № 1. С. 4–9. [Donetskova AD, Litvina MM, Smirnov DS, et al. Comparison of the expression of isoforms of the FOXP3 molecule by regulatory T cells of peripheral blood in allergic and lymphoproliferative diseases. Russ Med J. 2020;4(1):4–9. (In Russ).]
  • Bushnell CD, Chaturvedi S, Gage KR, et al. Sex differences in stroke: Challenges and opportunities. J Cereb Blood Flow Metab. 2018;38(12):2179–2191. doi: 10.1177/0271678X18793324
  • Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+CD25+ and FOXP3+ Regulatory T cells during the follicular phase of the menstrual cycle: Implications for human reproduction. J Immunol. 2014;178(4):2572–2578. doi: 10.4049/jimmunol.178.4.2572
  • Lee JH, Lydon JP, Kim CH. Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur J Immunol. 2012;(42):2683–2696. doi: 10.1002/eji.201142317
  • Brown MA, Su MA. An inconvenient variable: Sex hormones and their impact on T cell responses. J Immunol. 2019;202(7): 1927–1933. doi: 10.4049/jimmunol.1801403
  • McCullough LD, Mirza MA, Xu Y, et al. Stroke sensitivity in the aged: Sex chromosome complement vs. gonadal hormones. Aging (Albany NY). 2016;8(7):1432. doi: 10.18632/aging.100997
  • Savage PA, Klawon DE, Miller CH. Regulatory T cell development. Annu Rev Immunol. 2020;(38):421–453. doi: 10.1146/annurev-immunol-100219-020937
  • De Lafaille MA, Lafaille JJ. Natural and adaptive FOXP3+ regulatory T cells: More of the same or a division of labor? Immunity. 2009;30(5):626–635. doi: 10.1016/j.immuni.2009.05.002
  • Lal G, Zhang N, van der Touw W, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182(1):259–273. doi: 10.4049/jimmunol.182.1.259
  • Magg T, Mannert J, Ellwart JW, et al. Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur J Immunol. 2012;42(6):1627–1638. doi: 10.1002/eji.201141838
  • Yang W, Yu T, Cong Y. CD4+ T cell metabolism, gut microbiota, and autoimmune diseases: Implication in precision medicine of autoimmune diseases. Precis Clin Med. 2022;5(3):pbac018. doi: 10.1093/pcmedi/pbac018
  • Angelin A, Gil-de-Gómez L, Dahiya S, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metabol. 201725(6):1282–1293.e7. doi: 10.1016/j.cmet.2016.12.018
  • André S, Tough DF, Lacroix-Desmazes S, et al. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: Immunopathogenesis and therapeutic implications. Am J Pathol. 2009;174(5):1575–1587. doi: 10.2353/ajpath.2009.080987
  • Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899): 271–275. doi: 10.1126/science.1160062
  • Qiu M, Zong JB, He QW, et al. Cell heterogeneity uncovered by single-cell RNA sequencing offers potential therapeutic targets for ischemic stroke. Aging Dis. 2022;13(5):1436–1454. doi: 10.14336/AD.2022.0212
  • Miragaia RJ, Gomes T, Chomka A, et al. Single-cell Transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity. 2019;50(2):493–504.e7. doi: 10.1016/j.immuni.2019.01.001
  • Szabo PA, Levitin HM, Miron M, et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat Commun. 2019;10(1):4706. doi: 10.1038/s41467-019-12464-3
  • Dolati S, Ahmadi M, Khalili M, et al. Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke. Neurol Sci. 2018;39(4):647–654. doi: 10.1007/s10072-018-3250-4
  • Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M, et al. Regulatory T cells participate in the recovery of ischemic stroke patients. BMC Neurol. 2020;20(1):68. doi: 10.1186/s12883-020-01648-w
  • Chan A, Yan J, Csurhes P, et al. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positiveT cells in peripheral blood in human ischemic stroke: Effect on outcome. J Neuroimmunol. 2015;(286):42–47. doi: 10.1016/j.jneuroim.2015.06.013
  • Pang X, Qian W. Changes in regulatory T-cell levels in acute cerebral ischemia. J Neurol Surg A Cent Eur Neurosurg. 2017;78(4):374–379. doi: 10.1055/s-0037-1599055
  • Booth NJ, McQuaid AJ, Sobande T, et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J Immunol. 2010;184(8):4317–4326. doi: 10.4049/jimmunol.0903781
  • Deng G, Tang Y, Xiao J, et al. Naïve-memory regulatory T cells ratio is a prognostic biomarker for patients with acute ischemic stroke. Front Aging Neurosci. 2023;(15):1072980. doi: 10.3389/fnagi.2023.1072980
  • Li S, Huang Y, Liu Y, et al. Change and predictive ability of circulating immunoregulatory lymphocytes in long-term outcomes of acute ischemic stroke. J Cereb Blood Flow Metab. 2021;41(9):2280–2294. doi: 10.1177/0271678X21995694
  • Yan J, Greer JM, Etherington K, et al. Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol. 2009;206(1-2):112–117. doi: 10.1016/j.jneuroim.2008.11.001
  • Wang M, Thomson AW, Yu F, et al. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol. 2023;45(3):329–346. doi: 10.1007/s00281-022-00975-z
  • Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 2008;181(4): 2277–2284. doi: 10.4049/jimmunol.181.4.2277
  • Manicassamy S, Pulendran B. Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophages. Seminars Immunol. 2009;21(1):22–27. doi: 10.1016/j.smim.2008.07.007
  • Патент РФ № RU 2791738 C1. Шардина К.Ю., Заморина С.А., Бочкова М.С., и др. Способ получения аутологичных регуляторных Т-лимфоцитов путем культивирования ex vivo в присутствии хорионического гонадотропина. [Patent RUS RU 2791738 C1. Shardina KYu, Zamorina SA, Bochkova MS, et al. A method for obtaining autologous regulatory T-lymphocytes by culturing ex vivo in the presence of chorionic gonadotropin. (In Russ).] Режим доступа: https://patents.google.com/patent/RU2791738C1/ru. Дата обращения: 15.08.2023.
  • Golovina TN, Mikheeva T, Brusko TM, et al. Retinoic acid and rapamycin differentially affect and synergistically promote the ex vivo expansion of natural human T regulatory cells. PloS One. 2011;6(1):e15868. doi: 10.1371/journal.pone.0015868
  • Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+regulatory T cells. Blood. 2005; 105(12):4743–4748. doi: 10.1182/blood-2004-10-3932
  • Chapman NM, Zeng H, Nguyen TL, et al. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat Commun. 2018;9(1):2095. doi: 10.1038/s41467-018-04392-5
  • Chan MW, Chang CB, Tung CH, et al. Low-dose 5-aza-2'- deoxycytidine pretreatment inhibits experimental autoimmune encephalomyelitis by induction of regulatory T cells. Mol Med. 2014;20(1):248–256. doi: 10.2119/molmed.2013.00159
  • Polansky JK, Kretschmer K, Freyer J, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008; 38(6):1654–1663. doi: 10.1002/eji.200838105
  • Zhang H, Xia Y, Ye Q, et al. In vivo expansion of regulatory T cells with IL-2/IL-2 antibody complex protects against transient ischemic stroke. J Neurosci. 2018;38(47):10168–10179. doi: 10.1523/JNEUROSCI.3411-17.2018
  • Greilach SA, McIntyre LL, Nguyen QH, et al. Presentation of human neural stem cell antigens drives regulatory T cell induction. J Immunol. 2023;210(11):1677–1686. doi: 10.4049/jimmunol.2200798
  • Xia Y, Hu G, Chen Y, et al. Embryonic stem cell derived small extracellular vesicles modulate regulatory T cells to protect against ischemic stroke. ACS Nano. 2021;15(4):7370–7385. doi: 10.1021/acsnano.1c00672
  • Guo S, Luo Y. Brain Foxp3+ regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol. 2020;(81):106027. doi: 10.1016/j.intimp.2019
  • Shu L, Xu C, Yan ZY, et al. Post-Stroke microglia induce Sirtuin2 expression to suppress the anti-inflammatory function of infiltrating regulatory T cells. Inflammation. 2019;42(6): 1968–1979. doi: 10.1007/s10753-019-01057-3
  • Pan Z, Ma G, Kong L, Du G. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke. Pharmacol Res. 2021;(170):105742. doi: 10.1016/j.phrs.2021.105742
  • Yu HH, Ma XT, Ma X, et al. Remote limb ischemic postconditioning protects against ischemic stroke by promoting regulatory T cells thriving. J Am Heart Assoc. 2021;10(22):e023077. doi: 10.1161/JAHA.121.023077
  • Zhang Y, Liesz A, Li P. Coming to the rescue: Regulatory T cells for promoting recovery after ischemic stroke. Stroke. 2021;52(12):e837–e841. doi: 10.1161/STROKEAHA.121.036072
  • Liu C, Li N, Liu G. The role of MicroRNAs in regulatory T cells. J Immunol Res. 2020;2020:3232061. doi: 10.1155/2020/3232061
  • Kadir RR, Alwjwaj M, Bayraktutan U. MicroRNA: An emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cell Mol Neurobiol. 2022;42(5):1301–1319. doi: 10.1007/s10571-020-01028-5
  • Xu W, Gao L, Zheng J, et al. The roles of MicroRNAs in stroke: Possible therapeutic targets. Cell Transplant. 2018;27(12): 1778–1788. doi: 10.1177/0963689718773361
  • Copsel SN, Malek TR, Levy RB. Medical treatment can unintentionally alter the regulatory T cell compartment in patients with widespread pathophysiologic conditions. Am J Pathol. 2020;190(10):2000–2012. doi: 10.1016/j.ajpath.2020.07.012
  • Полуэктов М.Г., Нарбут А.М., Шувахина Н.А. Применение мелатонина в качестве нейропротектора при ишемическом инсульте // Медицинский совет. 2019. № 18. С. 18–24. [Poluektov MG, Narbut AM, Shuvakhina NA. The use of melatonin as a neuroprotector in ischemic stroke. Medical Council. 2019;(18):18–24. (In Russ).]
  • Ren W, Liu G, Chen S, et al. Melatonin signaling in T cells: Functions and applications. J Pineal Res. 2017;62(3):e12394. doi: 10.1111/jpi.12394
  • Medrano‐Campillo P, Sarmiento‐Soto H, Álvarez‐Sánchez N, et al. Evaluation of the immunomodulatory effect of melatonin on the T‐cell response in peripheral blood from systemic lupus erythematosus patients. J Pineal Res. 2015;58(2):219–226. doi: 10.1111/jpi.12208
  • Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci. 2021;(274):119343. doi: 10.1016/j.lfs.2021.119343
  • Lee SK, Park MJ, Jhun JY, et al. Combination treatment with metformin and tacrolimus improves systemic immune cellular homeostasis by modulating Treg and Th17 imbalance. Front Immunol. 2021;(11):581728. doi: 10.3389/fimmu.2020.581728
  • Wang Z, Kawabori M, Houkin K. FTY720 (Fingolimod) ameliorates brain injury through multiple mechanisms and is a strong candidate for stroke treatment. Curr Med Chem. 2020; 27(18):2979–2993. doi: 10.2174/0929867326666190308133732
  • Malone K, Diaz Diaz AC, Shearer JA, et al. The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation. 2021;18(1):37. doi: 10.1186/s12974-021-02083-5
  • Noh MY, Lee WM, Lee SJ, et al. Regulatory T cells increase after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke patients. Int Immunopharmacol. 2018;(60): 104–110. doi: 10.1016/j.intimp.2018.04.043
  • Luo X, Nie J, Wang S, et al. Poly(ADP-ribosyl)ation of FOXP3 protein mediated by PARP-1 protein regulates the function of regulatory T cells. J Biol Chem. 2015;290(48):28675–82. doi: 10.1074/jbc.M115.661611
  • Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–455. doi: 10.1038/nature12726
  • Akimova T, Ge G, Golovina T, et al. Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs. Clin Immunol. 2010;136(3):348–363. doi: 10.1016/j.clim.2010.04.018
  • Ao LY, Yan YY, Zhou L, et al. Immune cells after ischemic stroke onset: Roles, migration, and target intervention. J Mol Neurosci. 2018;66(3):342–355. doi: 10.1007/s12031-018-1173-4
  • Jickling GC, Liu D, Stamova B, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014;34(2):185–199. doi: 10.1038/jcbfm.2013.203
  • Pinheiro MA, Kooij G, Mizee MR, et al. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta. 2016;1862(3): 461–471. doi: 10.1016/j.bbadis.2015.10.018
  • Zhang D, Ren J, Luo Y, et al. T cell response in ischemic stroke: From mechanisms to translational insights. Front Immunol. 2021;(12):707972. doi: 10.3389/fimmu.2021.707972
  • Stubbe T, Ebner F, Richter D, et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab. 2013;33(1):37–47. doi: 10.1038/jcbfm.2012.128
  • Yu H, Cai Y, Zhong A, et al. The «dialogue» between central and peripheral immunity after ischemic stroke: Focus on spleen. Front Immunol. 2021;(12):5194. doi: 10.3389/fimmu.2021.792522
  • Белопасов В.В., Журавлева Е.Н., Нугманова Н.П., Абдрашитова А.Т. Постковидные неврологические синдромы // Клиническая практика. 2021. Т. 12, № 2. C. 69–82. [Belopasov VV, Zhuravleva EN, Nugmanova NP, Abdrashitova AT. Postcovid neurological syndromes. Clin Pract. 2021;12(2):69–82. (In Russ).] doi: 10.17816/clinpract71137
  • Ahmad SJ, Feigen CM, Vazquez JP, et al. Neurological Sequelae of COVID-19. J Integr Neurosci. 2022;21(3):77. doi: 10.31083/j.jin2103077
  • Belopasov VV, Yachou Y, Samoilova EM, Baklaushev VP. The nervous system damage in COVID-19. J Clin Pract. 2020. Vol. 11, N 2. P. 60–80. doi: 10.17816/clinpract34851
  • Katsanos AH, Palaiodimou L, Zand R, et al. The impact of SARS-CoV-2 on stroke epidemiology and care: A meta-analysis. Ann Neurol. 2021;89:380–388. doi: 10.1002/ana.25967
  • Sadeghi A, Tahmasebi S, Mahmood A, et al. Th17 and Treg cells function in SARS‐CoV-2 patients compared with healthy controls. J Cell Physiol. 2021;236(4):2829–2839. doi: 10.1002/jcp.30047
  • Wang H, Wang Z, Cao W, et al. Regulatory T cells in COVID-19. Aging Dis. 2021;12(7):1545–1553. doi: 10.14336/AD.2021.0709
  • Wang HY, Ye JR, Cui LY, et al. Regulatory T cells in ischemic stroke. Acta Pharmacol Sin. 2022;43(1):1–9. doi: 10.1038/s41401-021-00641-4
  • Dhawan M, Rabaan AA, Alwarthan S, et al. Regulatory T Cells (Tregs) and COVID-19: Unveiling the mechanisms, and therapeutic potentialities with a special focus on long COVID. Vaccines (Basel). 2023;11(3):699. doi: 10.3390/vaccines11030699
  • Haunhorst S, Bloch W, Javelle F, et al. A scoping review of regulatory T cell dynamics in convalescent COVID-19 patients: Indications for their potential involvement in the development of Long COVID? Front Immunol. 2022;(13):1070994. doi: 10.3389/fimmu.2022
  • Meckiff BJ, Ramírez-Suástegui C, Fajardo V, et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in COVID-19. Cell. 2020;183(5):1340–1353.e16. doi: 10.1016/j.cell.2020.10.001
  • Hoffmann AD, Weinberg SE, Swaminathan S, et al. Unique molecular signatures sustained in circulating monocytes and regulatory T cells in convalescent COVID-19 patients. Clin Immunol. 2023;(252):109634. doi: 10.1016/j.clim.2023.109634
  • Rizzo PA, Bellavia S, Scala I, et al. COVID-19 vaccination is associated with a better outcome in acute ischemic stroke patients: A retrospective observational study. J Clin Med. 2022;11(23):6878. doi: 10.3390/jcm11236878
Еще
Статья обзорная