Повреждение ДНК мононуклеарных клеток периферической крови, выявленное методом «комет», как возможный показатель чувствительности меланомы к иммунотерапии ниволумабом

Автор: Цырлина Евгения Владимировна, Порошина Татьяна Евгеньевна, Оганесян Ани Погосовна, Проценко Светлана Анатольевна, Берштейн Лев Михайлович

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Клинические исследования

Статья в выпуске: 2 т.20, 2021 года.

Бесплатный доступ

Цель исследования - оценить возможность применения степени повреждения ДНК в мононуклеарных клетках крови пациентов с метастатической меланомой в качестве критерия оценки эффективности проводимой терапии. Материал и методы. На 10 пациентах с прогрессирующим метастатическим типом меланомы методом «комет» исследована степень повреждения ДНК в мононуклеарных клетках крови до начала и через 3-4 мес терапии Ниволумабом. Результаты. Показано, что до начала лечения у пациентов в сопоставлении с группой сравнения без онкопатологии отмечается более высокий уровень повреждения ДНК в мононуклеарных клетках крови. Этот уровень существенно понижается в случае достижения стабилизации или полного регресса опухолевого процесса, но изменяется менее значительно или увеличивается при признаках прогрессирования опухоли на фоне терапии. Заключение. Не исключено, что исходный уровень и динамика изменения повреждения ДНК в мононуклеарных клетках крови у пациентов с меланомой может служить критерием в определении чувствительности опухоли к иммунотерапии при использовании не только Ниволумаба, но и других препаратов этого ряда.

Еще

Меланома, повреждение днк, мононуклеарные клетки, метод «комет», ниволумаб

Короткий адрес: https://sciup.org/140254427

IDR: 140254427   |   DOI: 10.21294/1814-4861-2021-20-2-37-45

Список литературы Повреждение ДНК мононуклеарных клеток периферической крови, выявленное методом «комет», как возможный показатель чувствительности меланомы к иммунотерапии ниволумабом

  • Araldi R.P., de Melo T.C., Mendes T.B., de Sá Júnior P.L., Nozima B.H., Ito E.T., de Carvalho R.F., de Souza E.B., de Cassia Stocco R. Using the comet and micronucleus assays for genotoxicity studies: A review. Biomed Pharmacother. 2015 May; 72: 74-82. https://doi.org/10.1016/j.biopha.2015.04.004.
  • Collins A.R. Investigating oxidative DNA damage and its repair using the comet assay. Mutat Res. 2009; 681(1): 24-32. https://doi.org/10.1016/j.mrrev.2007.10.002.
  • Arienti C., Zoli W., Pignatta S., Carloni S., Paganelli G., Ulivi P., Romeo A., Menghi E., Sarnelli A., Medri L., Polico R., Silvestrini R., Tesei A. Efficacy of different sequences of radio- and chemotherapy in experimental models of human melanoma. J Cell Physiol. 2014; 10: 1548-1556.
  • Streffer C. Strong association between cancer and genomic instability. Radiat Environ Biophys. 2010 May; 49(2): 125-31. https://doi.org/10.1007/s00411-009-0258-4.
  • Mouret S., Forestier A., Douki T. The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci. 2012 Jan; 11(1): 155-62. https://doi.org/10.1039/c1pp05185g.
  • Shimabukuro F., Neto C.F., Sanches J.A.Jr., Gattás G.J. DNA damage and repair in leukocytes of melanoma patients exposed in vitro to cisplatin. Melanoma Res. 2011; 21(2): 99-105. https://doi.org/10.1097/CMR.0b013e3283426839.
  • Palyvoda O., Polańska J., Wygoda A., Rzeszowska-Wolny J. DNA damage and repair in lymphocytes of normal individuals and cancer patients: studies by the comet assay and micronucleus tests. Acta Biochim Pol. 2003; 50(1): 181-90.
  • Lou J., He J., Zheng W., Jin L., Chen Z., Chen S., Lin Y., Xu S. Investigating the genetic instability in the peripheral lymphocytes of 36 untreated lung cancer patients with comet assay and micronucleus assay. Mutat Res. 2007; 617(1-2): 104-10. https://doi.org/10.1016/j.mrfmmm.2007.01.004.
  • Najafzadeh M., Baumgartner A., Gopalan R., Davies J.B., Wright A., Reynolds P.D., Anderson D. In vitro sensitivities to UVA of lymphocytes from patients with colon and melanoma cancers and precancerous states in the micronucleus and the Comet assays. Mutagenesis. 2012 May; 27(3): 351-7. https://doi.org/10.1093/mutage/ger087.
  • Allione A., Pardini B., Viberti C., Oderda M., Allasia M., Gontero P., Vineis P., Sacerdote C., Matullo G. The prognostic value of basal DNA damage level in peripheral blood lymphocytes of patients affected by bladder cancer. Urol Oncol. 2018; 36(5): 241.e15-241.e23. https://doi.org/10.1016/j.urolonc.2018.01.006.
  • Buchynska L.G., Brieieva O.V. Sensitivity to 4-hydroxyestradiol and DNA repair efficiency in peripheral blood lymphocytes of endometrial cancer patients. Exp Oncol. 2018 Mar; 40(1): 68-72.
  • Sestakova Z., Kalavska K., Hurbanova L., Jurkovicova D., Gursky J., Chovanec M., Svetlovska D., Miskovska V., Obertova J., Palacka P., Rejlekova K., Sycova-Mila Z., Cingelova S., Spanik S., Mardiak J., Chovanec M., Mego M. The prognostic value of DNA damage level in peripheral blood lymphocytes of chemotherapy-naïve patients with germ cell cancer. Oncotarget. 2016; 7; 16: 75996-76005.
  • Tronov V.A., Artamonov D.N., Abramov M.E., Gorbacheva L.B., Lichinitser M.R. Svyaz' effektivnosti reparatsii DNK, urovnya ekspressii belkov MLH1, MSH2 i FASR v limfotsitakh bol'nykh disseminirovannoi melanomoi kozhi s klinicheskim otvetom na khimioterapiyu. Voprosy onkologii. 2011; 57; 2: 165-172.
  • Yesil Devecioglu T., Aydogan F., Omurtag G.Z., Bese N.S., Sardas S. Investigation of genotoxicity risk and DNA repair capacity in breast cancer patients using anastrozole. North Clin Istanb. 2018 Jan 22; 5(1): 6-13. https://doi.org/10.14744/nci.2017.55822.
  • Ostling O., Johanson K.J. Microelectrophoretic study of radiationinduced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984 Aug 30; 123(1): 291-8. https://doi.org/10.1016/0006-291x(84)-0411-x.
  • Harding S.M., Benci J.L., Irianto J., Discher D.E., Minn A.J., Greenberg R.A. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017; 548(7668): 466-470. https://doi.org/10.1038/nature23470.
  • Corti A., Duarte T.L., Giommarelli C., De Tata V., Paolicchi A., Jones G.D., Pompella A. Membrane gamma-glutamyl transferase activity promotes iron-dependent oxidative DNA damage in melanoma cells. Mutat Res. 2009 Oct 2; 669(1-2): 112-21. https://doi.org/10.1016/j.mrfmmm.2009.05.010.
  • Azijli K., Stelloo E., Peters G.J., Van Den Eertwegh A.J. New developments in the treatment of metastatic melanoma: immune checkpoint inhibitors and targeted therapies. Anticancer Res. 2014 Apr; 34(4): 1493-505.
  • Koppolu V., Rekha Vasigala V.K. Checkpoint immunotherapy by nivolumab for treatment of metastatic melanoma. J Cancer Res Ther. 2018 Oct-Dec; 14(6): 1167-1175. https://doi.org/10.4103/jcrt.JCRT_1290_16.
  • Hodi F.S., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Cowey C.L., Lao C.D., Schadendorf D., Wagstaff J., Dummer R,. Ferrucci P.F., Smylie M., Hill A., Hogg D., Marquez-Rodas I., Jiang J., Rizzo J., Larkin J., Wolchok J.D. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018 Nov; 19(11): 1480-1492. https://doi.org/10.1016/S1470-2045(18)30700-9.
  • Heppt M.V., Siepmann T., Engel J., Schubert-Fritschle G., Eckel R., Mirlach L., Kirchner T., Jung A., Gesierich A., Ruzicka T., Flaig M.J., Berking C. Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care. BMC Cancer. 2017; 17(1): 536. https://doi.org/10.1186/s12885-017-3529-5.
  • Thomas N.E., Edmiston S.N., Alexander A., Groben P.A., Parrish E., Kricker A., Armstrong B.K., Anton-Culver H., Gruber S.B., From L., Busam K.J., Hao H., Orlow I., Kanetsky P.A., Luo L., Reiner A.S., Paine S., Frank J.S., Bramson J.I., Marrett L.D., Gallagher R.P., Zanetti R., Rosso S., Dwyer T., Cust A.E., Ollila D.W., Begg C.B., Berwick M., Conway K. GEM Study Group. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma. JAMA Oncol. 2015; 1; 3: 359-368.
  • Ravnan M.C., Matalka M.S. Vemurafenib in patients with BRAF V600E mutation-positive advanced melanoma. Clin Ther. 2012 Jul; 34(7): 1474-86. https://doi.org/10.1016/j.clinthera.2012.06.009.
  • Saroufim M., Habib R.H., Gerges R., Saab J., Loya A., Amr S.S., Sheikh S., Satti M., Oberkanins C., Khalifeh I. Comparing BRAF mutation status in matched primary and metastatic cutaneous melanomas: implications on optimized targeted therapy. Exp Mol Pathol. 2014 Dec; 97(3): 315-20. https://doi.org/10.1016/j.yexmp.2014.09.008.
  • Larkin J., Lao C.D., Urba W.J., McDermott D.F., Horak C., Jiang J., Wolchok J.D. Efficacy and Safety of Nivolumab in Patients With BRAF V600 Mutant and BRAF Wild-Type Advanced Melanoma: A Pooled Analysis of 4 Clinical Trials. JAMA Oncol. 2015; 1(4): 433-40. https://doi.org/10.1001/jamaoncol.2015.1184.
  • Cheewinthamrongrod V., Kageyama H., Palaga T., Takabe T., Waditee-Sirisattha R. DNA damage protecting and free radical scavenging properties of mycosporine-2-glycine from the Dead Sea cyanobacterium in A375 human melanoma cell lines. J Photochem Photobiol B. 2016 Nov; 164: 289-295. https://doi.org/10.1016/j.jphotobiol.2016.09.037.
  • McKelvey-Martin V.J., Green M.H., Schmezer P., Pool-Zobel B.L., De Méo M.P., Collins A. The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res. 1993; 288(1): 47-63. https://doi.org/10.1016/0027-5107(93)90207-v.
  • Olive P.L., Banáth J.P., Durand R.E. Heterogeneity in radiationinduced DNA damage and repair in tumor and normal cells measured using the «comet» assay. Radiat Res. 1990 Apr; 122(1): 86-94.
  • Smith T.R., Miller M.S., Lohman K.K., Case L.D., Hu J.J. DNA damage and breast cancer risk. Carcinogenesis. 2003 May; 24(5): 8839. https://doi.org/10.1093/carcin/bgg037.
  • Azqueta A., Collins A.R. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol. 2013 Jun; 87(6): 949-68. https://doi.org/10.1007/s00204-013-1070-0.
  • Shaposhnikov S., Frengen E., Collins A.R. Increasing the resolution of the comet assay using fluorescent in situ hybridization--a review. Mutagenesis. 2009 Sep; 24(5): 383-9. https://doi.org/10.1093/mutage/gep021.
  • McKenna D.J., McKeown S.R., McKelvey-Martin V.J. Potential use of the comet assay in the clinical management of cancer. Mutagenesis. 2008 May; 23(3): 183-90. https://doi.org/10.1093/mutage/gem054.
  • Kopjar N., Garaj-Vrhovac V., Milas I. Assessment of chemotherapy-induced DNA damage in peripheral blood leukocytes of cancer patients using the alkaline comet assay. Teratog Carcinog Mutagen. 2002; 22(1): 13-30. https://doi.org/10.1002/tcm.1035.
  • Uriol E., Sierra M., Comendador M.A., Fra J., Martínez-Camblor P., Lacave A.J., Sierra L.M. Long-term biomonitoring of breast cancer patients under adjuvant chemotherapy: the comet assay as a possible predictive factor. Mutagenesis. 2013 Jan; 28(1): 39-48. https://doi.org/10.1093/mutage/ges050.
  • Ribero S., Stucci L.S., Marra E., Marconcini R., Spagnolo F., Orgiano L., Picasso V., Queirolo P., Palmieri G., Quaglino P., Bataille V. Effect of Age on Melanoma Risk, Prognosis and Treatment Response. Acta Derm Venereol. 2018 Jul 11; 98(7): 624-629. https://doi.org/10.2340/00015555-2944.
  • Balch C.M., Soong S.J., Gershenwald J.E., Thompson J.F., Coit D.G., Atkins M.B., Ding S., Cochran A.J., Eggermont A.M., Flaherty K.T., Gimotty P.A., Johnson T.M., Kirkwood J.M., Leong S.P., McMasters K.M., Mihm M.C.Jr., Morton D.L., Ross M.I., Sondak V.K. Age as a prognostic factor in patients with localized melanoma and regional metastases. Ann Surg Oncol. 2013 Nov; 20(12): 3961-8. https://doi.org/10.1245/s10434-013-3100-9.
  • Heuser V.D., de Andrade V.M., Peres A., Gomes de Macedo Braga L.M., Bogo Chies J.A. Influence of age and sex on the spontaneous DNA damage detected by micronucleus test and comet assay in mice peripheral blood cells. Cell Biol Int. 2008 Oct; 32(10): 1223-9. https://doi.org/10.1016/j.cellbi.2008.07.005.
Еще
Статья научная