Possibilities of obtaining biogas from manure and amaranth

Автор: Karaeva Julia V., Timofeeva Svetlana S.

Журнал: Инженерные технологии и системы @vestnik-mrsu

Рубрика: Процессы и машины агроинженерных систем

Статья в выпуске: 3, 2021 года.

Бесплатный доступ

Introduction. The use of biomass allows increasing the rate of biogas formation and its specific yield. This work aims to study the kinetics of methanogenesis and determine the optimal duration of digestion and organic load, which are the main indicators of the technological process of biogas formation. Materials and Methods. The substrate (dairy manure, biomass of amaranth) was the study object. Experimental studies were carried out using a laboratory biogas plant. The computer program (certificate No. 2018662045) was used to obtain modified Gompertz models describing the kinetics of biogas formation. Based on the obtained data, the hydraulic retention time and organic loading rate (the key parameters in the design of biogas plants were determined). Results. The paper presents the experimental studies results of the biogas formation kinetics when using dry amaranth biomass. The Gompertz mathematical models were obtained. Methane-tank control parameters (hydraulic retention time and organic loading rate) were obtained for anaerobic digestion of a new substrate. Discussion and Conclusion. The use of new co-substrate Amaranthus retroflexus L. allowed increasing the specific biogas yield from dairy manure by 52.2 % and the ultrasonic pre-treatment in combination with the herbal supplement by 89.1 %. The optimal hydraulic retention time value was 10 days and organic loading rate was 4.1 kg of volatile solids per m3 of digester per day.

Еще

Biogas, co-digestion, dairy manure, biomass, hydraulic retention time, amaranth

Короткий адрес: https://sciup.org/147236035

IDR: 147236035   |   DOI: 10.15507/2658-4123.031.202103.336-348

Список литературы Possibilities of obtaining biogas from manure and amaranth

  • Kapoor R., Ghosh P., Kumar M., et al. Valorization of Agricultural Waste for Biogas Based Circular Economy in India: A Research Outlook. Bioresource Technology. 2020; 304. (In Eng.) DOI: https://doi. org/10.1016/j.biortech.2020.123036
  • Abad V., Avila R., Vicent T., Font X. Promoting Circular Economy in the Surroundings of an Organic Fraction of Municipal Solid Waste Anaerobic Digestion Treatment Plant: Biogas Production Impact and Economic Factors. Bioresource Technology. 2019; 283:10-17. (In Eng.) DOI: https://doi. org/10.1016/j.biortech.2019.03.064
  • Monlau F., Francavilla M., Sambusiti C., et al. Toward a Functional Integration of Anaerobic Digestion and Pyrolysis for a Sustainable Resource Management. Comparison between Solid-Digestate and Its Derived Pyrochar as Soil Amendment. Applied Energy. 2016; 169:652-662. (In Eng.) DOI: https://doi. org/10.1016/j.apenergy.2016.02.084
  • Tayibi S., Monlau F., Marias F., et al. Coupling Anaerobic Digestion and Pyrolysis Processes for Maximizing Energy Recovery and Soil Preservation According to the Circular Economy Concept. Journal of Environmental Management. 2021; 279. (In Eng.) DOI: https://doi.org/10.1016/j.jenvman.2020.111632
  • González-Arias J., Fernández C., Rosas J.G., et al. Integrating Anaerobic Digestion of Pig Slurry and Thermal Valorisation of Biomass. Waste and Biomass Valorization. 2020; 11:6125-6137. (In Eng.) DOI: https://doi.org/10.1007/s12649-019-00873-w
  • Feng Q., Lin Yu. Integrated Processes of Anaerobic Digestion and Pyrolysis for Higher Bioenergy Recovery from Lignocellulosic Biomass: a Brief Review. Renewable and Sustainable Energy Reviews. 2017; 77:1272-1287. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2017.03.022
  • Nigam N., Shanker K., Khare P. Valorisation of Residue of Mentha arvensis by Pyrolysis: Evaluation of Agronomic and Environmental Benefits. Waste and Biomass Valorization. 2019; 9:1909-1919. (In Eng.) DOI: https://doi.org/10.1007/s12649-017-9928-7
  • Giwa A.S., Xu H., Chang F., et al. Pyrolysis Coupled Anaerobic Digestion Process for Food Waste and Recalcitrant Residues: Fundamentals, Challenges, and Considerations. Energy Science and Engineering. 2019; 7(6):2250-2264 (In Eng.) DOI: https://doi.org/10.1002/ese3.503
  • González R., González J., Rosas J.G., et al. Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. Journal of Carbon Research. 2020; 6(2). (In Eng.) DOI: https://doi.org/10.3390/c6020043
  • Karaeva J.V., Timofeeva S.S., Bashkirov V.N., et al. Thermochemical Processing of Digestate from Biogas Plant for Recycling Dairy Manure and Biomass. Biomass Conversion and Biorefinery. 2021. (In Eng.) DOI: https://doi.org/10.1007/s13399-020-01138-6
  • Zhou J., Yang J., Yu Q., et al. Different Organic Loading Rates on the Biogas Production during the Anaerobic Digestion of Rice Straw: A Pilot Study. Bioresource Technology. 2017; 244(1):865-871. (In Eng.) DOI: https://doi.org/10.1016/j.biortech.2017.07.146
  • Jiang J., He Sh., Kang X., et al. Effect of Organic Loading Rate and Temperature on the Anaerobic Digestion of Municipal Solid Waste: Process Performance and Energy Recovery. Frontiers in Energy Research. 2020. (In Eng.) DOI: https://doi.org/10.3389/fenrg.2020.00089
  • Musa M.A., Idrus S., Hasfalina C.M., Daud N.N.N. Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate. International Journal of Environmental Research and Public Health. 2018; 15(10). (In Eng.) DOI: https://doi.org/10.3390/ijerph15102220
  • Shi X.-Sh., Dong J.-J., Yu J.-H., et al. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors. BioMedResearch International. 2017. (In Eng.) DOI: https://doi.org/10.1155/2017/2457805
  • Pramanik S.K., Suja F.B., Porhemmat M., Pramanik B.K. Performance and Kinetic Model of a Single-Stage Anaerobic Digestion System Operated at Different Successive Operating Stages for the Treatment of Food Waste. Processes. 2019; 7(9). (In Eng.) DOI: https://doi.org/10.3390/pr7090600
  • Sarker S., Lamb J.J., Hjelme D.R., Lien K.M. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. Applied Sciences. 2019; 9(9). (In Eng.) DOI: https:// doi.org/10.3390/app9091915
  • Abbas Y., Jamil F., Rafiq S., et al. Valorization of Solid Waste Biomass by Inoculation for the Enhanced Yield of Biogas. Clean Technologies and Environmental Policy. 2020; 22:513-522. (In Eng.) DOI: https://doi.org/10.1007/s10098-019-01799-6
  • Esteves E.M.M., Herrera A.M.N., Esteves V.P.P., Morgado C.R.V. Life Cycle Assessment of Manure Biogas Production: A Review. Journal of Cleaner Production. 2019; 219:411-423. (In Eng.) DOI: https://doi.org/10.1016/jjclepro.2019.02.091
  • Sevillano C.A., Pesantes A.A., Carpió E.P., et al. Anaerobic Digestion for Producing Renewable Energy - The Evolution of This Technology in a New Uncertain Scenario. Entropy. 2021; 23(2). (In Eng.) DOI: https://doi.org/10.3390/e23020145
  • Sukhesh M.J., Rao P.V. Synergistic Effect in Anaerobic Co-Digestion of Rice Straw and Dairy Manure - A Batch Kinetic Study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019; 41(17):2145-2156 (In Eng.) DOI: https://doi.org/10.1080/15567036.2018.1550536
  • Alhraishawi A.A., Alani W.K. The Co-Fermentation of Organic Substrates: A Review Performance of Biogas Production under Different Salt Content. Journal of Physics: Conference Series. 2018; 1032. (In Eng.) DOI: https://doi.org/10.1088/1742-6596/1032/1/012041
  • Awasthi M.K., Sarsaiya S., Wainaina S., et al. A Critical Review of Organic Manure Biorefinery Models toward Sustainable Circular Bioeconomy: Technological Challenges, Advancements, Innovations, and Future Perspectives. Renewable & Sustainable Energy Reviews. 2019; 111:115-131. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2019.05.017
  • Begum S., Ahuja S., Anupoju G.R., et al. Operational Strategy of High Rate Anaerobic Digester with Mixed Organic Wastes: Effect of Co-Digestion on Biogas Yield at Full Scale. Environmental Technology. 2020; 41(9):1151-1159. (In Eng.) DOI: https://doi.org/10.1080/09593330.2018.1523232
  • Lv Z.Y., Feng L., Shao L.J., et al. The Effect of Digested Manure on Biogas Productivity and Microstructure Evolution of Corn Stalks in Anaerobic Cofermentation. Biomed Research International. 2018; (In Eng.) DOI: https://doi.org/10.1155/2018/5214369
  • D^bowski M., Kisielewska M., Kazimierowicz J., et al. The Effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock. Energies. 2020; 13(9). (In Eng.) DOI: https://doi.org/10.3390/en13092186
  • Rincón B., Fernández-Rodríguez M.J., Lama-Calvente D., Borja R. The Influence of Microalgae Addition as Co-Substrate in Anaerobic Digestion Processes. In: E. Jacob-Lopes, ed. Microalgal Biotechnology. IntechOpen; 2018. p. 899-927. (In Eng.) DOI: https://doi.org/10.5772/intechopen.75914
  • Shah F.A., Mahmood Q., Rashid N., et al. Co-Digestion, Pretreatment and Digester Design for Enhanced Methanogenesis. Renewable and Sustainable Energy Reviews. 2015; 42:627-642. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2014.10.053
  • Kulichkova G.I., Ivanova T.S., Köttner M., et al. Plant Feedstocks and Their Biogas Production Potentials. The Open Agriculture Journal. 2020; 14:219-234. (In Eng.) DOI: https://doi. org/10.2174/1874331502014010219
  • Karaeva J.V., Kamalov R.F., Kadiyrov A.I. Production of Biogas from Poultry Waste Using the Biomass of Plants from Amaranthaceae Family. IOP Conference Series: Earth and Environmental Science. 2019; 288. (In Eng.) DOI: https://doi.org/10.1088/1755-1315/288/1/012096
  • Garcia N.H., Mattioli A., Gil A., et al. Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas. Renewable and Sustainable Energy Reviews. 2019; 112. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2019.05.040
  • Selvaraj B., Krishnasamy S., Munirajan S., et al. Kinetic Modelling of Augmenting Biome-thane Yield from Poultry Litter by Mitigating Ammonia. International Journal of Green Energy. 2018; 15(12):766-772. (In Eng.) DOI: https://doi.org/10.1080/15435075.2018.1529580
  • Wang Z.Q., Yun S.N., Xu H.F., et al. Mesophilic Anaerobic Co-Digestion of Acorn Slag Waste with Dairy Manure in a Batch Digester: Focusing on Mixing Ratios and Bio-Based Carbon Accelerants. Bioresource Technology. 2019; 286. (In Eng.) DOI: https://doi.org/10.1016/j.biortech.2019.121394
  • Caruso M.C., Braghieri A., Capece A., et al. Recent Updates on the Use of Agro-Food Waste for Biogas Production. Applied Sciences. 2019; 9(6). (In Eng.) DOI: https://doi.org/10.3390/app9061217
  • Rusanowska P., Zielinski M., Dudek M.R., D^bowski M. Mechanical Pretreatment of Lignocel-lulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System. Journal of EcologicalEngineering. 2018; 19(5):219-224. (In Eng.) DOI: https://doi.org/10.12911/22998993/89822
Еще
Статья научная