Полихлорированные бифенилы как причина экологических проблем и разработки ремедиационных технологий на основе биологических агентов

Бесплатный доступ

В обзоре представлен анализ актуальных на данный момент проблем, связанных с загрязнением окружающей среды полихлорированными бифенилами - соединениями, включенными в рамках международной конвенции в список Стойких органических загрязнителей. Показаны особенности строения молекулы полихлорбифенилов и их взаимодействия с окружающей средой и живыми организмами. Основное внимание уделено аэробным бактериям, одному из основных компонентов микробиоценоза почв. Показано, что длительное воздействие полихлорбифенилов привело к преимущественному отбору в загрязненных микробиоценозах бактерий, способных использовать полихлорированные бифенилы как источник углерода и энергии. Наиболее активные штаммы послужили основой биотехнологических препаратов, направленных на удаление плохлорбифенилов из окружающей среды.

Еще

Полихлорированные бифенилы, бактерии, штаммы, аэробная деструкция, очистка почв

Короткий адрес: https://sciup.org/147242785

IDR: 147242785   |   DOI: 10.17072/2410-8553-2023-2-68-88

Список литературы Полихлорированные бифенилы как причина экологических проблем и разработки ремедиационных технологий на основе биологических агентов

  • Горбунова Т.И., Первова М.Г., Забелина О.Н., Са-лоутин В.И., Чупахин О.Н. Полихлорбифенилы: Проблемы экологии, анализа и химической утилизации М.: КРАСАНД; Екатеринбург: УрО РАН. 2011. 400 с.
  • Горбунова Т.И. Первова М.Г., Салоутин В.И., Чу-пахин О.Н. Химическая функционализация полихлор-ированных бифенилов: новые достижения Екатеринбург: Издательство Уральского Университета. 2018. 728 с.
  • Горбунова Т.И., Салоутин В.И., Чупахин О.Н. Химические методы превращений полихлорбифени-лов // Успехи химии. 2010. Т. 79, № 6. С. 565–586.
  • Демин Д.В. Ремедиация почв, загрязнённых по-лихлорбифенилами: дис. … канд. биол. наук: 03.02.13. Пущино, 2013. 38 с.
  • Егорова Д.О., Шумкова Е.С., Демаков В.А., Плотникова Е.Г. Разложение хлорированных бифени-лов и продуктов их биоконверсии штаммом Rhodococ-cus sp. В7а // Прикладная биохимия и микробиология. 2010. Т. 46, № 6. С. 644–650.
  • Жариков Г.А., Марченко А.И., Крайнов О.А., Ка-пранов В.В., Жариков М.Г. Разработка и полевые испытания технологий биоремедиации территорий, загрязненных токсичными химическими веществами // Медицина экстремальных ситуаций. 2013. №2(44). С. 41–51.
  • Занавескин Л.Н., Аверьянов А.В. Полихлорбифе-нилы: проблемы загрязнения окружающей среды и технологические методы обезвреживания // Успехи химии. 1998. Т. 67, № 8. С. 788–800.
  • Крятов И.А., Тонкопий Н.И., Ушаков О.В., Водянова М.А., Донерьян Л.Г., Евсеева И.С., Ушаков Д.И., Туркова И.С., Воробьева О.В., Цапкова Н.Н. Регулирование безопасных уровней содержания полихлориро-ванных бифенилов в почве: российский и международный опыт // Гигиена и санитария. 2013. № 6. С. 52–57.
  • Первова М.Г., Плотникова К.А., Горбунова Т.И., Салоутин В.И., Чупахин О.Н. Исследование конгене-ров полихлорированных бифенилов в технической смеси «Трихлорбифенил» // Журнал общей химии. 2015. Т. 85, № 8. С. 1374–1379. https://doi.org/10.1134/S1070363215080216
  • Плотникова Е.Г., Соляникова И.П., Егорова Д.О., Шумкова Е.С., Головлева Л.А. Особенности разложения 4-хлорбифенила и 4-хлорбензойной кислоты штаммом Rhodococcus ruber P25 // Микробиология. 2012. Т. 81. № 2. С. 159–159
  • Трегер Ю. СОЗ – стойкие и очень опасные // The Chemical Journal. 2013. №1. P. 30–34.
  • Шумкова Е.С., Егорова Д.О., Боронникова С.В., Плотникова Е.Г. Полиморфизм генов bphA бактерий-деструкторов бифенила/хлорированных бифе-нилов // Молекулярная биология. 2015. Т. 49. № 4. С. 638–638.
  • Abramowicz D.A. Aerobic and anaerobic PCB bi-odegradation in the environment // Environmental health perspectives. 1995. Vol. 103. № 5. P. 97–99.
  • Adams C.I.M., Baker J.E., Kjellerup B.V. Toxico-logical effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States // Chemosphere. 2016. Vol. 154. P. 148–154.
  • Adebusoye S.A., Picardal F.W., Ilori M.O., Amund O.O., Fuqua C. Characterization of multiple novel aerobic polychlorinated biphenyl (PCB)-utilizing bacterial strains indigenous to contaminated tropical African soils // Biodegradation. 2008. Vol. 19, № 1. P. 145–159.
  • Agulló L., Pieper D.H., Seeger M. Genetics and Biochemistry of Biphenyl and PCB Biodegradation. In: Rojo F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Micro-biology// Springer, Cham. 2019. P. 595–622.
  • Aken B.V., Correa P.A., Schnoor J.L. Phytore-mediation of polychlorinated biphenyls: new trends and promises // Environ. Sci. Technol. 2010. Vol. 44. № 8. P. 2767–2776.
  • Ang L.I., Yuanyuan Q.U., Jiti Z., Min G. Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4 // Journal of Environmen-tal Sciences. 2009. Vol. 21. № 2. P. 211–217.
  • Arensdorf J. J., Focht D. D. Meta cleavage path-way for 4-chlorobenzoate, an intermediate in the metabo-lism of 4-chlorobiphenyl by Pseudomonas cepacia P166 // Appl. Environ. Microbiol. 1995. Vol. 61. P. 443–447.
  • Arensdorf J. J., Focht D. D. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls // Appl. Envi-ron. Microbiol. 1994. Vol. 60. P. 2884–2889.
  • Asturias J.A., Timmis K.N. Three different 2,3-di-hydroxybiphenyl-1,2-dioxygenase genes in the gram-posi-tive polychlorobiphenyl-degrading bacterium Rhodococ-cus globerulus P6 // Journal of bacteriology. 1993. Vol. 175. №. 15. P. 4631–4640.
  • Atago Y, Shimodaira J, Araki N, Bin Othman N, Zakaria Z, Fukuda M, Futami J, Hara H. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1 // Biosci Biotechnol Bio-chem. 2016 Vol. 80. № 5. P. 1012–1019. https://doi.org/10.1080/09168451.2015.1127134
  • Bako C.M., Mattes T.E., Marek R.F., Hornbuckle K.C., Schnoor J.L. Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and ab-sence of sediment during lab bioreactor experiments // En-viron Pollut. 2021. Vol. 271. Article 116364. https://doi.org/10.1016/j.envpol.2020.116364
  • Bedard D.L., Wagner R.E., Brennan M.J., Haberl M.L., Brown J.F. Extensive degradation of Aro-clors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850 // Appl Envi-ron Microbiol. 1987 Vol. 53. № 5. P. 1094–102. https://doi.org/10.1128/aem.53.5.1094-1102.1987
  • Bedard D.L., Haberl M.L. Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains // Microbial ecology. 1990. Vol. 20. № 1. P. 87–102.
  • Blasco R., Wittich R.M., Mallavarapu M., Timmis K.N., Pieper D.H. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. // J Biol Chem. 1995. Vol. 270. № 49. P. 29229–35. https://doi.org/10.1074/jbc.270.49.29229
  • Bokvajová A., Burkhard J. Screening and separa-tion of microorganisms degrading PCBs // Environmental Health Perspectives Supplements. 1994. Vol.102. № 2. P. 552–559.
  • Brown J.F., Wagner R.E.; Bedard D.L., Brennan M.J.; Carnahan, J.C. PCB transformations in upper Hud-son sediments // Northeastern Environmental Science. 1984. Vol. 3. P. 166–178.
  • Cervantes-González E., Guevara-García M.A., García-Mena J., Ovando-Medina V.M. Microbial diversity assessment of polychlorinated biphenyl–contaminated soils and the biostimulation and bioaugmentation processes // En-vironmental monitoring and assessment. 2019. Vol. 191. № 2. https://doi.org/10.1007/s10661-019-7227-4
  • Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdova M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma JJ, Ma-henthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility // Proceedings of the National Academy of Sciences. 2006. Vol. 103. № 42. P. 15280–15287.
  • Chakraborty J., Das S. Characterization of the met-abolic pathway and catabolic gene expression in biphenyl degrading marine bacterium Pseudomonas aeruginosa JP-11 // Chemosphere. 2016. Vol. 144. P. 1706–1714.
  • Chang YC, Takada K, Choi D, Toyama T, Sawada K, Kikuchi S. Isolation of biphenyl and polychlorinated bi-phenyl-degrading bacteria and their degradation pathway // Applied biochemistry and biotechnology. 2013. Vol. 170. № 2. P. 381–398. https://doi.org/10.1007/s12010-013-0191-5
  • Chang YC, Sawada K, Kim ES, Jung K, Kikuchi S. Whole-genome sequence of Aquamicrobium sp. strain SK-2, a polychlorinated biphenyl-utilizing bacterium iso-lated from sewage sludge // Genome Announce. 2015. Vol. 3. № 3. https://doi.org/10.1128/genomeA.00439-15
  • Chun C.L. Electrical stimulation of microbial PCB degradation in sediment // Water Res. 2013. Vol. 47. P. 141–152. https://doi.org/10.1016/j.watres.2012.09.038
  • Chung S.Y., Maeda M., Song E., Horikoshij K., Kudo T. A Gram-positive polychlorinated biphenyl-degrad-ing bacterium, Rhodococcus erythropolis strain TA421, iso-lated from a termite ecosystem // Bioscience, biotechnology, and biochemistry. 1994. Vol. 58. № 11. P. 2111–2113.
  • Colbert C.L., Agar N.Y., Kumar P., Chakko M.N., Sinha S.C., Powlowski J.B., Eltis L.D., Bolin J.T. Struc-tural characterization of Pandoraea pnomenusa B-356 bi-phenyl dioxygenase reveals features of potent polychlorin-ated biphenyl-degrading enzymes // PLoS One. 2013. Vol. 8, № 1. https://doi.org/10.1371/journal.pone.0052550
  • Devi N.L. Persistent Organic Pollutants (POPs): Environmental risks, toxicological effects, and bioremedia-tion for Environmental Safety and Challenges for Future Re-search. In: Saxena G., Bharagava R. (eds) Bioremediation of Industrial Waste for Environmental Safety. 2020. Springer, Singapore. Р. 53–76. https://doi.org/10.1007/978-981-13-1891-7_4
  • Elangovan S., Pandian S.B.S., S. J, G., Joshi S.J. Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation // Microbial Metabo-lism of Xenobiotic Compounds. 2019. P. 165–188.
  • Erickson B.D., Kaley II R.G. Application of poly-chlorinated biphenyls // Environ. Sci. Pollut. Res. 2011. Vol. 18. P. 135–151.
  • Erickson B.D., Mondello F.J. Enhanced biodegra-dation of polychlorinated biphenyls after site-directed mu-tagenesis of a biphenyl dioxygenase gene // Appl. Environ. Microbiol. 1993. Vol. 59. № 11. P. 3858–3862.
  • Ewald J.M., Humes S.V., Martinez A., Schnoor J.L., Mattes T.E. Growth of Dehalococcoides spp. and in-creased abundance of reductive dehalogenase genes in an-aerobic PCB-contaminated sediment microcosms // Envi-ron. Sci. Pollut. Res. 2020. Vol. 27. P. 8846–8858. https://doi.org/10.1007/s11356-019-05571-7
  • Fava F., Di Gioia D., Marchetti L., Quattroni G. Aerobic dechlorination of low-chlorinated biphenyls by bacterial biofilms in packed-bed batch bioreactors // Appl. Microbiol. Biotechnol. 1996. Vol. 45. P. 562–568.
  • Fava F., Di Gioia D., Cinti S., Marchetti L., Quat-troni G. Degradation and dechlorination of low-chlorin-ated biphenyls by a three-membered bacterial co-culture // Appl. Microbiol. Biotechnol. 1994. Vol. 41. P. 117–123.
  • Fava F., Di Gioia D., Marchetti L. Role of the re-actor configuration in the biological detoxification of a damp site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions // Appl. Microbiol. Biotech-nol. 2000. Vol. 53. P. 243–248.
  • Field J.A., Sierra-Alvarez R. Microbial transfor-mation of chlorinated benzoates // Rev. Environ. Sci. Bio-technol. 2008. Vol. 7. P. 191–210.
  • Final act of the Conference of Plenipotentiaries on the Stockholm, 22-23 May // UNEP / POPS/CONF/4. United Nations Environment Programme. Geneva. 2001. 44 p.
  • Fukuda K., Hosoyama A., Tsuchikane K., Ohji S, Yamazoe A., Fujita N., Shintani M., Kimbara K. Com-plete genome sequence of polychlorinated biphenyl de-grader Comamonas testosteroni TK102 (NBRC 109938) // Genome Announce. 2014. Vol. 2, № 5. https://doi.org/10.1128/genomea.00865-14
  • Furukawa K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs) // The Journal of general and applied microbiology. 2000. Vol. 46. № 6. P. 283–296.
  • Gioia R., Akindele A.J., Adebusoye S.A., Asante K.A., Tanabe S., Buekens A., Sasco A.J. Polychlorinated bi-phenyls (PCBs) in Africa: a review of environmental levels // Environmental Science and Pollution Research. 2014. Vol. 21. № 10. P. 6278–6289. https://doi.org/10.1007/s11356-019-05571-710.1007/s11356-013-1739-1
  • Gómez-Gil L., Kumar P., Barriault D., Bolin J.T., Sylvestre M., Eltis L.D. Characterization of biphenyl diox-ygenase of Pandoraea pnomenusa B-356 as a potent poly-chlorinated biphenyl-degrading enzyme // Journal of bac-teriology. 2007. Vol. 189. № 15. P. 5705–5715.
  • Goris J., De Vos P., Caballero-Mellado J., Park J., Falsen E., Quensen J.F., Tiedje J.M., Vandamme P. Classification of the biphenyl-and polychlorinated bi-phenyl-degrading strain LB400T and relatives as Burkhold-eria xenovorans sp. nov // International journal of system-atic and evolutionary microbiology. 2004. Vol. 54. № 5. P. 1677–1681.
  • Hatamian-Zarmi A. Shojaosadati S.A., Vasheghani-Farahani E, Hosseinkhani S., Emamzadeh A. Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils // International Biodeteri-oration & Biodegradation. 2009. Vol. 63. № 6. P. 788–794.
  • Holoman T.R., Elberson M.A., Cutter L.A., May H.D., Sowers K.R. Characterization of defined 2,3,5,6-tet-rachlorobiphenyl-ortho-dechlorinating microbial commu-nity by comparative sequence analysis of genes coding for 16S rRNA // Appl. Environ. Microbiol. 1998. Vol. 64. P. 3359–3367.
  • Hong Q., Dong X., He L., Jiang X., Li S. Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster // International Biodeterioration & Biodegradation. 2009. Vol. 63. № 4. P. 365–370.
  • Horvathova, H., Laszlova K., Dercova K. Biore-mediation of PCB-contaminated shallow river sediments: the efficacy of biodegradation using individual bacterial strains and their consortia // Chemosphere. 2018. Vol. 193. P. 270–277. https://doi.org/10.1016/j.chemo-sphere.2017.11.012
  • Hou L.H., Dutta S.K. Phylogenetic characteriza-tion of several para‐and meta‐PCB dechlorinating Clos-tridium species: 16s rDNA sequence analyses // Letters in applied microbiology. 2000. Vol. 30. № 3. P. 238–243.
  • Hu J., Qian M., Zhang Q., Cui J., Yu C., Su X., Shen C., Hashmi M.Z., Shi J. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl-and polychlorinated biphenyls-degrading bacterium without dead-end interme-diates accumulation // PloS one. 2015. Vol. 10. № 4. Arti-cle e0122740 https://doi.org/10.1007/s11356-019-05571-710.1371/journal.pone.0122740
  • Huang S., Shan M., Chen J., Penttinen P., Qin H. Contrasting dynamics of polychlorinated biphenyl dissipa-tion and fungal community composition in low and high organic carbon soils with biochar amendment // Environ-mental Science and Pollution Research. 2018. Vol. 25. P. 33432–33442
  • Ilori M.O., Robinson G.K., Adebusoye S.A. Aer-obic mineralization of 4,4’-dichlorobiphqnyl and 4-chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl // World J. Microbiol. Biotechnol. 2008. Vol. 24. P. 1259–1265. https://doi.org/10.1007\s11274-007-9597-y
  • Ilori M.O., Picardal F.W., Aramayo R., Adebusoye S.A., Obayori O.S., Benedik M.J. Catabolic plasmid specifying polychlorinated biphenyl degradation in Cupriavidus sp. strain SK‐4: Mobilization and expres-sion in a pseudomonad // Journal of basic microbiology. 2015. Vol. 55. № 3. P. 338–345.
  • Jia L.Y., Zheng A.P., Xu L., Huang X.D., Zhang Q., Yang F.L. Isolation and characterization of compre-hensive polychlorinated biphenyl degrading bacterium, Enterobacter sp. LY402 // J Microbiol Biotechnol. 2008. Vol. 18. № 5. P. 952–957.
  • Jia Y., Wang J., Ren C., Nahurira R., Khokhar I, Wang J., Fan S., Yan Y. Identification and characteriza-tion of a meta-cleavage product hydrolase involved in biphenyl degradation from Arthrobacter sp. YC-RL1 // Appl. Microb. Biotech. 2019. Vol. 103. P. 6825–6836. https://doi.org/10.1007/s00253-019-09956-z
  • Kim S., Picardal F.W. A novel bacterium that uti-lizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates // FEMS Microbiology Letters. 2000. Vol. 185. № 2. P. 225–229.
  • Kim S., Picardal F.W. Microbial growth on di-chlorobiphenyls chlorinated on both rings as a sole carbon and energy source // Appl. Environ. Microbiol. 2001. Vol. 67. № 4. P. 1953–1955.
  • Kolar A.B., Hršak D., Fingler S., Ćetković H., Petrić I., Kolić N.U. PCB-degrading potential of aero-bic bacteria enriched from marine sediments // Int. Bio-deter. Biodegrad. 2007. Vol. 60. P. 16–24. https://doi.org/10.16/j.ibiod.2006.11.004
  • Kour D., Rana K.L., Kumar R., Yadav N., Raste-gari A.A., Yadav A.N. Singh K. Gene manipulation and reg-ulation of catabolic genes for biodegradation of biphenyl compounds // In New and Future Developments in Micro-bial Biotechnology and Bioengineering. 2019. P. 1–23.
  • Kranzioch I., Stoll C., Holbach A., Chen H., Wang L., Zheng B., Norra S., Bi .Y, Schramm K.W., Tiehm A. Dechlorination and organohalide-respiring bacteria dy-namics in sediment samples of the Yangtze Three Gorges Reservoir // Environmental Science and Pollution Re-search. 2013. Vol. 20. № 10. P. 7046–7056.
  • Kumar P., Mohammadi M., Viger J.F., Barriault D., Gomez-Gil L., Eltis L.D., Bolin J.T., Sylvestre M. Struc-tural insight into the expanded PCB-degrading abilities of a biphenyl dioxygenase obtained by directed evolution // Journal of molecular biology. 2011. Vol. 405. № 2. P. 531–547.
  • Lambo A.J., Patel T.R. Cometabolic degradation of polychlorinated biphenyls at low temperature by psy-chrotolerant bacterium Hydrogenophaga sp. IA3-A // Cur-rent microbiology. 2006. Vol. 53. № 1. P. 48–52.
  • Liang Y., Martinez A., Hornbuckle K.C., Mattes T.E. Potential for polychlorinated biphenyl biodegradation in sediments from Indiana Harbor and Ship Canal // Inter-national biodeterioration & biodegradation. 2014. Vol. 89. P. 50–57.
  • Maltseva O.V., Tsoi T.V., Quensen J.F. 3rd, Fu-kuda M., Tiedje J.M. Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria // Biodegradation. 1999. Vol. 10. № 5. P. 363–371.
  • Masai E., Yamada A., Healy J.M., Hatta T., Kim-bara K., Fukuda M., Yano K. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. Vol. 61. № 6. P. 2079 – 2085.
  • Matturo B., Ubaldi C., Grenni P., Caracciolo A.B., Rossetti S. Polychlorinated biphenyl (PCB) anaerobic deg-radation in marine sediments: microcosm study and role of autochthonous microbial communities // Environmental Sci-ence and Pollution Research. 2016. Vol. 23. P. 12613–12623. https://doi.org/10.1016/j.nbt.2019.12.004
  • Mohn W.W., Tiedje J.M. Microbial reductive dehalogenation // Microbiological Reviews. 1992. Vol. 56. P. 482–507.
  • Mondello F.J. Cloning and expression in Esche-richia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation // Journal of bacteri-ology. 1989. Vol. 171. № 3. P. 1725–1732.
  • Müller M.H.B., Polder A., Brynildsrud O.B., Karimi M., Lie E., Manyilizu W.B., Mdegela R.H., Mokiti F., Murtadha M., Nonga H.E., Skaare J.U., Lyche J.L. Or-ganochlorine pesticides (OCPs) and polychlorinated bi-phenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania // Environ-mental research. 2017. Vol. 154. P. 425–434.
  • Murinová S., Dercová K., Dudášová H. Degra-dation of polychlorinated biphenyls (PCBs) by four bac-terial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. // Int. Biodeter. Bio-degrad. 2014. Vol. 91. P. 52–59. https://doi.org/10.1016/j.ibiod.2014.03.011
  • Murinová S., Dercová K. Potential Use of newly isolated bacterial strain Ochrobactrum anthropi in biore-mediation of polychlorinated biphenyls. // Water, Air, & Soil Pollution. 2014. Vol. 225. Article 1980. https://doi.org/10.1007/s11270-014-1980-3
  • Murugan K., Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in bi-odegradation // Ecotoxicology and environmental safety. 2018. Vol. 157. P. 40–60.
  • Nam I.H., Chon C.M., Jung K.Y., Kim J.G. Bio-degradation of biphenyl and 2-chlorobiphenyl by a Pseu-domonas sp. KM-04 isolated from PCBs-contaminated coal mine soil // Bulletin of environmental contamination and toxicology. 2014. Vol. 93. № 1. P. 89–94. https://doi.org/10.1007/s00128-014-1286-6
  • Natarajan M.R., Wu W.-M., Sanford R., Jain M.K. Degradation of biphenyl by methanogenic microbial con-sortium // Biotechnol. Lett. 1999. Vol. 21. P. 741–745.
  • Negrete-Bolagay D., Zamora-Ledezma C., Chuya-Sumba C., De Sousa F.B., Whitehead D., Alexis F., Guerrero V.H. Persistent organic pollutants: the trade-off between po-tential risks and sustainable remediation methods. // Journal of environmental Management. 2021. Vol. 300. Article 113737. https://doi.org/10.1016/j.jenvman.2021.113737
  • Nogales B., Moore E.R., Llobet-Brossa E., Ros-sello-Mora R., Amann R., Timmis K.N. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil // Appl. Environ. Microbiol. 2001. Vol. 67. P. 1874–1884.
  • Ouyang X., Yin H., Yu X., Guo Z., Zhu M., Lu G., Dang Z. Enhanced bioremediation of 2,3’,4,4’,5-prnta-chlorobiphenyl by consortium GYB1 immobilized on so-dium alginate-biochar // Science of the Total Environment. 2021. Vol. 788. Article 147774.
  • Papale M., Giannarelli S., Francesconi S., Di Marco G., Mikkonen A., Conte A., Rizzo C., De Domenico E., Michaud L., Giudice A.L. Enrichment, isolation and bi-odegradation potential of psychrotolerant polychlorinated-biphenyl degrading bacteria from the Kongsfjorden (Sval-bard Islands, High Arctic Norway) // Marine pollution bul-letin. 2017. Vol. 114. № 2. P. 849–859.
  • Parales R.E., Resnic S.M. Aromatic ring hydrox-ylating dioxygenases // In: Ramos J.L., Levesque R.C. (eds) Pseudomonas. 2006. Springer. Boston, MA. P. 287–340.
  • Park S.H., Oh K.H., Kim C.K. Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks // Curr. Micro-biol. 2001. Vol. 43. № 3. P. 176–181.
  • Passatore L., Rossetti S., Juwarkar A.A., Mas-sacci A. Phytoremediation and bioremediation of poly-chlorinated biphenyls (PCBs): state of knowledge and research perspectives // Journal of Hazardous Materials. 2014. Vol. 278. P. 189–202. https://doi.org/10.1016/j.jhazmat.2014.05.051
  • Petrić I., Hršak D., Fingler S., Udiković-Kolić N., Bru D., Martin-Laurent F. Insight in the PCB-de-grading functional community in long-term contami-nated soil under bioremediation // Journal of soils and sediments. 2011. Vol. 11. № 2. P. 290–300.
  • Pieper D.H. Aerobic degradation of polychlo-rinated biphenyls // Applied microbiology and biotech-nology. 2005. Vol. 67. № 2. P. 170–191. https://doi.org/10.1007/s00253-004-1810-4
  • Pieper D.H., Seeger M. Bacterial metabolism of polychlorinated biphenyls // Journal of molecular mi-crobiology and biotechnology. 2008. Vol. 15. № 2-3. P. 121–138.
  • Ponce B.L., Latorre V.K., González M., Seeger M. Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400 // Enzyme and mi-crobial technology. 2011. Vol. 49. № 6-7. P. 509–516.
  • Potrawfke T., Armengaud J., Wittich R.-M. Chlorocatechols substituted at positions 4 and 5 are sub-strates of the broad-spectrum chlorocatechol 1,2-dioxygen-ase of Pseudomonas chlororaphis RW71 // Appl. Environ. Microbiol. 2001. Vol. 183. P. 997–1011.
  • Reddy A.V.B., Moniruzzaman M., Aminabhavi T.M. Polychlorinated biphenyls (PCBs) in the environ-ment: recent updates on sampling, pretreatment, cleanup technologies and their analysis. // Chemical Engineering Journal. 2019. Vol. 358. P. 1186–1207. https://doi.org/10.1016/j.cej.2018.09.205
  • Ridl J., Suman J., Fraraccio S., Hradilova M., Strejcek M., Cajthaml T., Zubrova A., Macek T., Strnad H., Uhlik O. Complete genome sequence of Pseudomonas al-caliphila JAB1 (= DSM 26533), a versatile degrader of or-ganic pollutants // Standards in genomic sciences. 2018. Vol. 13. № 1. https://doi.org/10.1016/j.nbt.2019.12.00410.1186/s40793-017-0306-7
  • Sakai M., Miyauchi K., Kato N., Masai E., Fu-kuda M. 2-Hydroxypenta-2, 4-dienoate metabolic pathway genes in a strong polychlorinated biphenyl degrader, Rho-dococcus sp. strain RHA1 // Appl. Environ. Microbiol. 2003. Vol. 69. № 1. P. 427–433
  • Serdar B., LeBlanc W.G., Norris J.M., Dickinson L.M. Potential effects of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures: a cross-sectional assessment of the NHANES 2003-2004 data // Environmental Health. 2014. Vol. 13. № 1. https://doi.org/10.1016/j.nbt.2019.12.00410.1186/1476-069x-13-114
  • Seto M., Kimbara K., Shimura M., Hatta T., Fu-kuda M., Yano K. A novel transformation of polychlorin-ated biphenyls by Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. Vol. 61. № 9. P. 3353–3358.
  • Shah V., Zakrzewski M., Wibberg D., Eikmeyer F., Schlüter A., Madamwar D. Taxonomic profiling and met-agenome analysis of a microbial community from a habitat contaminated with industrial discharges// Microbiol Ecol-ogy. 2013. № 66. P. 533–550. https://doi.org/10.1007/s00248-013-0253-9
  • Sharma J.K., Gautam R.K., Nanekar S.V., Weber R., Singh B.K., Singh S.K., Juwarkar A.A. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils // Environmental Science and Pollution Research. 2018. Vol. 25. P. 16355–16375.
  • Shimura M., Mukerjee-Dhar G., Kimbara K., Na-gato H., Kiyohara H., Hatta T. Isolation and characteriza-tion of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene // FEMS mi-crobiology letters. 1999. Vol. 178. № 1. P. 87–93.
  • Shintani M., Ohtsubo Y., Fukuda K., Hosoyama A., Ohji S., Yamazoe A., Fujita N., Nagata Y., Tsuda M., Hatta T., Kimbara K. Complete genome sequence of the thermophilic polychlorinated biphenyl degrader Geobacil-lus sp. strain JF8 (NBRC 109937 // Genome Announce. 2014. Vol. 2. № 1. http://dx.doi.org/10.1128/ge-nomeA.01213-13
  • Shuai J., Yua X., Zhang J., Xiong А., Xiong F. Re-gional analysis of potential polychlorinated biphenyl de-grading bacterial strains from China // Brazilian journal of microbiology. 2016. Vol. 47. № 3. P. 536–541.
  • Sierra I., Valera J.L., Marina M.L., Laborda F. Study of the biodegradation process of polychlorinated bi-phenyls in liquid medium and soil by a new isolated aero-bic bacterium (Janibacter sp.) // Chemosphere. 2003. Vol. 53. № 6. P. 609–618.
  • Somaraja P.K., Gayathri D., Ramaiah N. Molec-ular characterization of 2-chlorobiphenyl degrading Steno-trophomonas maltophilia GS-103 // Bulletin of environ-mental contamination and toxicology. 2013. Vol. 91. № 2. P. 148–153.
  • Sondossi M., Barriault D., Sylvestre M. Metabo-lism of 2,2'-and 3,3'-dihydroxybiphenyl by the biphenyl catabolic pathway of Comamonas testosteroni B-356 // Appl. Environ. Microbiol. 2004. Vol. 70. № 1. P. 174–181.
  • Song M., Luo C., Li F., Jiang L., Wang Y., Zhang D., Zhang G. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of elec-tronic waste- contaminated soil. // Sci. Total Environ. 2015. Vol. 502. P. 426–433. https://doi.org/10.1016/j.Sci-totenv.2014.09.045
  • Song M., Jiang L., Zhang D., Luo C., Yin H., Li Y., Zhang G. Identification of biphenyl-metabolizing mi-crobes in activated biosludge using cultivation-independ-ent and -dependent approaches // Journal of Hazardous Ma-terials. 2018. Vol. 353. P. 534–541.
  • Sowers K.R., May H.D. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? // Current opinion in biotechnology. 2013. Vol. 24. № 3. P. 482–488
  • Šrédlová K., Cajthaml T. Recent advances in PCB removal from historically contaminated environmental ma-trices // Chemosphere. 2022. Vol. 287. Articlre 132096.
  • Steliga T., Wojtowicz K., Kapusta P., Brzeszcz J. Assessment of biodegradation efficiency of polychlorin-ated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. // Molecules. 2020. Vol. 25. Article 709.
  • Suenaga H., Yamazoe A., Hosoyama A., Kimura N., Hirose J., Watanabe T., Fujihara H., Futagami T., Goto M., Furukawa K. Draft genome sequence of the polychlo-rinated biphenyl-degrading bacterium Cupriavidus ba-silensis KF708 (NBRC 110671) isolated from biphenyl-contaminated soil // Genome Announce. 2015. Vol. 3. № 2. https://doi.org/10.1016/j.nbt.2019.12.00410.1128/ge-nomeA.00143-15
  • Suenaga H., Fujihara H., Kimura N., Hirose J., Watanabe T., Futagami T., Goto M., Shimodaira J., Fu-rukawa K. Insights into the genomic plasticity of Pseudo-monas putida KF715, a strain with unique biphenyl‐uti-lizing activity and genome instability properties // Envi-ronmental microbiology reports. 2017. Vol. 9. № 5. P. 589–598.
  • Tu C., Ma L., Guo P., Song F., Teng Y., Zhang H., Luo Y. Rhizoremediation of a dioxin-like PCB polluted soil by alfalfa: dynamic characterization at temporal and spatial scale // Chemosphere. 2017. Vol. 189. P. 517–524.
  • Valizadeh S., Lee S.S., Baek K., Choi Y.J., Jeon B.H., Rhee G.H., Andrew Lin K.Y., Park Y.K. Bioremedia-tion strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review // Environmental Re-search. 2021. Vol. 200. Article 111757.
  • Vilo C., Benedik M.J., Ilori M., Dong Q. Draft genome sequence of Cupriavidus sp. strain SK-4, a di-ortho-substituted biphenyl-utilizing bacterium isolated from polychlorinated biphenyl-contaminated sludge // Genome Announce. 2014. Vol. 2, № 3. https://doi.org/10.1016/j.nbt.2019.12.00410.1128/ge-nomeA.00474-14
  • Warenik-Bany M., Maszewski S., Mikolajczyk S., Piskorska-Pliszczynska J. Impact of environmental pollu-tion on PCDD/F and PCB bioaccumulation in game ani-mals // Environmental Pollution. 2019. Vol. 255. https://doi.org/10.1016/j.nbt.2019.12.004 10.1016/j.en-vpol.2019.113159
  • Warren R., Hsiao W.W., Kudo H., Myhre M., Dos-anjh M., Petrescu A., Kobayashi H., Shimizu S., Miyauchi K., Masai E., Yang G., Stott J.M., Schein J.E., Shin H., Khattra J., Smailus D., Butterfield Y.S., Siddiqui A., Holt R., Marra M.A., Jones S.J., Mohn W.W., Brinkman F.S., Fukuda M., Davies J., Eltis L.D. Functional characteriza-tion of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. strain RHA1 // Journal of bac-teriology. 2004. Vol. 186. № 22. P. 7783–7795.
  • Watanabe T., Yamazoe A., Hosoyama A., Fuji-hara H., Suenaga H., Hirose J., Futagami T., Goto M., Kimura N., Furukawa K. Draft genome sequence of Cu-priavidus pauculus strain KF709, a biphenyl-utilizing bacterium isolated from biphenyl-contaminated soil // Genome Announce. 2015. Vol. 3. № 2. https://doi.org/10.1016/j.nbt.2019.12.00410.1128/ge-nomeA.00222-15
  • Watanabe T., Yamazoe A., Hosoyama A., Fuji-hara H., Suenaga H., Hirose J., Futagami T., Goto M., Ki-mura N., Furukawa K. Draft genome sequence of Pseudo-monas toyotomiensis KF710, a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil // Genome Announce. 2015. Vol. 3. № 2. https://doi.org/10.1016/j.nbt.2019.12.00410.1128/ge-nomeA.00223-15
  • Wiegel J., Wu Q.Z. Microbial reductive dehalo-genation of polychlorinated biphenyls // FEMS Microbiol. Lett. 2000. Vol. 32. № 1. P. 1–15.
  • Xu L., Xu J.J., Jia L.Y., Liu W.B., Jian X. Conge-ner selectivity during polychlorinated biphenyls degrada-tion by Enterobacter sp. LY402 // Current microbiology. 2011. Vol. 62. № 3. P. 784–789.
  • Xu Y., Yu M., Shen A. Complete genome sequence of the polychlorinated biphenyl degrader Rhodococcus sp. WB1 // Genome Announce. 2016. Vol. 4. № 5. https://doi.org/10.1016/j.nbt.2019.12.004 e00996-16
  • Yang X., Liu X., Song L., Xie F., Zhang G., Qian S. Characterization and functional analysis of a novel gene cluster involved in biphenyl degradation in Rhodococcus sp. strain R04 // J. Appl. Microbiol. 2007. Vol. 103. № 6. P. 2214–2224.
  • Yu H., Wan H., Feng Ch., Yi X., Liu X., Ren Y., Wei C. Microbial polychlorinated biphenyl dechlorination in sediments by electrical stimulation: The effect of adding acetate and nonionic surfactant // Science of the Total En-vironment. 2017. Vol. 580. P. 1371–1380.
  • Zhang P., Ge L., Gao H., Yao T., Fang X., Zhou C., Na G. Distribution and transfer pattern of polychlorin-ated biphenyls (PCBs) among the selected environmental media of Ny-Alesund, the Arctic: as a case study // Marine pollution bulletin. 2014. Vol. 89. № 1-2. P. 267–275.
  • Zhang Y., Deng C.P., Shen B., Yang J.S., Wang E.T., Yuan H.L. Syntrophic interactions within a butane-oxidizing bacterial consortium isolated from Puguang Gas Field in China. // Microb. Ecol. 2016. Vol. 72. P. 538–548. https://doi.org/10.1007/s00248-016-0799-4
  • Zhao Q., Bai J., Lu Q., Gao Z., Jia J., Cui B., Liu X. Polychlorinated biphenyls (PCBs) in sediments/soils of different wetlands along 100-year coastal reclamation chronosequence in the Pearl River Estuary, China // Envi-ronmental pollution. 2016. Vol. 213. P. 860–869.
  • Zhu L., Zhou J., Zhang R., Tang X., Wang J., Li Y., Zhang Q., Wang W. Degradation mechanism of biphenyl and 4,4’-dichlorobiphenyl cis-dihydroxylation by nonheme 2,3 dioxygenases BphA: A QM/MM approach / L. Zhu [et al.] // Chemosphere. 2020. Vol. 247. Arti-cle125844.
Еще
Статья обзорная