Особенности проектирования установок органического цикла Ренкина

Бесплатный доступ

В этой статье рассмотрены особенности проектирования установок, работающих по принципу органического цикла Ренкина. Во-первых, обоснован выбор органического цикла Ренкина в качестве наиболее эффективной технологии для утилизации низкопотенциального тепла путем сравнения и анализа с другими технологиями. Во-вторых, предложена методика подбора и расчета установок, работающих по принципу органического цикла Ренкина, с учетом особенностей выбора рабочего тела, типа расширителя, а также конфигурации. В-третьих, представлен пример расчета прототипа такой установки на 4 кВт, работающей на тепловой энергии горячей воды от котла, моделирование которого выполнено в программе SmoWeb, по результатам которого он был спроектирован. В-четвертых, в проектировании для данной технологии учтены особенности эксплуатации, пуска и ремонта.

Еще

Органический цикл ренкина, утилизация низкопотенциального тепла, энергоэффективность, органический теплоноситель, расширитель

Короткий адрес: https://sciup.org/146281387

IDR: 146281387   |   DOI: 10.17516/1999-494X-0173

Список литературы Особенности проектирования установок органического цикла Ренкина

  • M. Bianchi., A. De Pascale. Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources, Applied Energy, 2011, 88, 1500-1509.
  • Карабарин Д.И. Анализ методов утилизации теплоты анодных газов в алюминиевом производстве. Промышленная энергетика, 2017, 1, 25-29
  • Карабарин Д.И., Михайленко С.А. Проект автономной котельной в районах децентрализованной энергетики "НАУКА ТЕХНОЛОГИИ ИННОВАЦИИ» часть 4. НГТУ, 2017, 1, 62-66
  • Quoilin S., Van Den Broek M., Declaye S., Dewallef P., Lemort V. Techno economic survey of Organic Rankine Cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 2013, 22, 168-186.
  • Vanslambrouck B. The Organic Rankine Cycle: current market overview. In: Proceedings of the international symposium on waste heat recovery by Organic Rankine Cycle, 2009.
  • Ohman H. Implementation and evaluation of a low temperature waste heat recovery power cycle using NH3 in an Organic Rankine, Cycle Energy, 2012, 2, 74-80.
  • Citrin D. Power generation from cement plant waste heat (power point presentation). CII- Green Cementech: ORMAT InternationalInc, 2005.
  • Gaia M. Turboden ORC Systems ‘‘Electricity Generation from Enhanced Geothermal Systems’’, Strasbourg, 2006.
  • Lorenz M. Biomasse-KWK mit einem Dampf-Schraubenmotor, Kohler&Ziegler Anlagentechnik GmbH, 2006.
  • Holdmann G. ORC technology for waste heat applications. In: Proceedings of the diesel heat recovery and efficiency workshop, 2007.
  • Schuster A, Karellas S, Kakaras E, Spliethoff H. Energetic and economic investigation of Organic Rankine Cycle applications, Applied Thermal Engineering, 2008, 29, 1809-1817.
  • Quoilin S., Lemort V. Technological and economical survey of Organic Rankine Cycle systems. In: Proceedings of the ECEMEI conference, Vilamoura, 2009.
  • Zyhowski G., Brown A. Low Global Warming Fluids for Replacement of HFC-245fa and HFC-134a in ORC Applications Honeywell - A, History of Innovation CFCs HCFCs HFCs HFOs, 2014.
  • Chen Q., Xu J., Chen H., A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source, Apply Energy, 2012, 98, 562-573.
  • Guo C., Du X., Yang L., Yang Y., Organic Rankine cycle for power recovery of exhaust flue gas, Applied Thermal Engineering, 2015, 75, 135-144.
  • Yang K., Zhang H., Wang Z., Zhang J., Yang F., Wang E., Yao B. Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions, Energy, 2013, 58, 494-510.
  • Garg P., Kumar P., Srinivasan K., Dutta P., Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles, Applied Thermal Engineering, 2013, 51, 292-300.
  • Wang X. D., Zhao L. Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation Solar Energy, 2009, 83(5), 605-613.
  • Tchanche B.F., Lambrinos G., Frangoudakis A., Papadakis G. Low-grade heat conversion into power using organic Rankine cycles - A review of various applications, Renewable and Sustainable Energy Reviews, 2011, 15(8), 3963-3979.
  • Xu J., Yu C. Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycle, Energy, 2014, 74, 719-733.
  • Quoilin S. Sustainable energy conversion through the use of organic Rankine cycles for waste heat recovery and solar applications [Ph.D thesis]. University of Liège; 2011.
  • Person J.G. Performance mapping vs design parameters for screw compressors and other displacement compressor types. VDI Berichte nr. 859, Düsseldorf; 1990.
  • Qiu G, Shao Y, Li J, Liu H, Riffat SB. Experimental investigation of a biomass- fired ORC-based micro-CHP for domestic applications, Fuel, 2012, 96, 374-382.
  • Desideri A, Broek MVD, Gusev S, Lecompte S, Lemort V. Experimental study and dynamic modeling of a WHR ORC power system with screw expander. In: Proceedings of the ASME ORC 2013 2nd international seminar ORC power system, Rotterdam, Netherlands, 2013.
  • Zheng N., Zhao L., Wang X.D., Tan Y.T. Experimental verification of a rolling- piston expander that applied for low -temperature Organic Rankine Cycle, Applly Energy, 2013, 112, 1265-1274.
  • Lemort V., Declaye S., Quoilin S. Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle, Power Energy, 2011, 226, 126-136.
  • Farrokhi M., Noie S.H., Akbarzadeh Aa. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings, Applly Thermal Enineering, 2014, 69(1), 221-229.
  • Yang B., Peng X., He Z., Guo B., Xing Z. Experiment al. investigation on the internal working process of a CO2 rotary vane expander buildings, Applly Thermal Enineering, 2009, 29, 2289-2296.
  • Badr O., Probert S.D., O’Callaghan P. Performances of multi-vane expanders, Apply Energy, 1985, 20, 207-234.
  • Subiantoro A., Yap K.S., Ooi K.T. Experimental investigations of the revolving vane (RV-I) expander, Applly Thermal Enineering, 2013, 50, 393-400.
  • Xia C., Zhang W., Bu G., Wang Z., Shu P. Experimental study on a sliding vane expander in the HFC410 A refrigeration system for energy recovery, Applly Thermal Enineering, 2013, 59, 559-567.
  • Brümmer P.A. Energy efficiency - waste heat utilization with screw expanders, Pumps, Compressors and Process Components, 2012
  • Wang W.,Wu Y., Ma C., Xia G., Wang J. Experimental study on the performance of single screw expanders by gap adjustment, Energy, 2013, 62, 379-384.
  • Qiu G., Liu H., Riffat S. Expanders for micro-CHP systems with organic rankine cycle Applly, Thermal Enineering, 2011, 31, 3301-3307.
  • Zhang Y. Experimental study on the performance of single screw expander with 195 mm diameter screw. In: Proceedings of the ASME ORC 2013 2nd International Seminar ORC Power System Rotterdam, Netherlands; 2013.
  • Seher D., Lengenfelder T., Gerhardt J., Eisenmenger N., Hackner M., Krinn I. Waste heat recovery for commercial vehicles with a rankine process. In: 21st Aachen colloquium automobile and engine technology, Aachen, Germany; 2012.
  • Wang X.D., Zhao L.,Wang J.L., Zhang W.Z., Zhao X.Z., Wu W. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa, Solar Energy, 2010, 84, 353-364.
  • Lemort V., Guillaume L., Legros A., Declaye S. A comparison of piston, screw and scroll expanders for small-scale Rankine cycle systems. 3rd Int. Conf. Microgeneration Relat. Technol. Naples, Italy; 2013.
  • Clemente S., Micheli D., Reini M., Taccani R. Energy efficiency analysis of organic rankine cycles with scroll expanders for cogenerative applications, Apply Energy, 2012, 97, 792-801.
  • Zhou N., Wang X., Chen Z., Wang Z. Experimental study on organic rankine cycle for waste heat recovery from low-temperature flue gas, Energy, 2013, 55, 216-225.
  • Oudkerk J.F., Quoilin S., Lemort V. Evaluation of an orc based micro-CHP system involving a hermetic scroll expander.In: Proceedings of the ASMEORC 2011, first international seminar on ORC power systems. TU delft, Netherlands; 2011.
  • Clemente S., Micheli D., Reini M. Numerical model and performance analysis of a scroll machine for ORC applications. In: Proceeding of ECOS 2010, Lausanne, Switzerland; 2010.
  • Muhammad I., Muhammad U., Byung S.P., Dong H.L. Volumetric expanders for low grade heat and waste heat recovery applications, Renewable and Sustainable Energy Reviews, 2016, 57, 1090-1109.
Еще
Статья научная