Optimal shape of arch concrete block bridge

Автор: Tyukalov Yury Yakovlevich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 8 (93), 2020 года.

Бесплатный доступ

The object of research is arched bridges made of concrete blocks backfilled with soil. The aim of the study was to develop a technique for determining the arch bridge's optimal shape in order to ensure the required size of the compressed cross-sectional zone at any automobile load position. The calculation takes into account the horizontal and vertical pressure of the backfill soil and the arch dead weight. The concrete blocks can have variable heights. Method. To solve the problem in a physically nonlinear formulation, the stepwise loading method and the possible stress states principle in increments were used. The solution was constructed by the finite element method based on piecewise constant approximations of the moments and forces. The nodes equilibrium equations obtained using the possible displacements principle are added to the additional energy functional written in increments form. The nodes vertical and horizontal displacements are accepted as possible displacements. When determining the required dimensions of the arch, the automobile load all possible positions are considered. Results. The optimum geometric parameters have been determined for an arch bridge with a span of 12 meters. The destructive automobile load value is determined. For the design load, the obtained internal moments and forces are compared with the ones calculated by the program based on the finite element method in displacements.


Arch bridge, finite element method, concretes, optimal shape, numerical methods, cracks

Короткий адрес: https://readera.org/143172537

IDR: 143172537   |   DOI: 10.18720/CUBS.93.7

Список литературы Optimal shape of arch concrete block bridge

  • Audenaert, A., Fanning, P., Sobczak, L., Peremans, H. 2-D analysis of arch bridges using an elasto-plastic material model. Engineering Structures. 2008. 30(3). Pp. 845-855. DOI: 10.1016/j.engstruct.2007.05.018
  • Amorim, D.L.N.D.F., Proença, S.P.B., Flórez-López, J. A model of fracture in reinforced concrete arches based on lumped damage mechanics. International Journal of Solids and Structures. 2013. 50(24). Pp. 4070-4079. DOI: 10.1016/j.ijsolstr.2013.08.012
  • Galassi, S., Misseri, G., Rovero, L., Tempesta, G. Failure modes prediction of masonry voussoir arches on moving supports. Engineering Structures. 2018. 173(July). Pp. 706-717. DOI: 10.1016/j.engstruct.2018.07.015
  • Gattesco, N., Boem, I., Andretta, V. Experimental behaviour of non-structural masonry vaults reinforced through fi bre-reinforced mortar coating and subjected to cyclic horizontal loads. Engineering Structures. 2018. 172(December 2017). Pp. 419-431. DOI: 10.1016/j.engstruct.2018.06.044
  • Beatini, V., Royer-Carfagni, G., Tasora, A. Modeling the shear failure of segmental arches. International Journal of Solids and Structures. 2019. 158. Pp. 21-39. DOI: 10.1016/j.ijsolstr.2018.08.023
  • Houšt', V., Eliáš, J., Miča, L. Shape optimization of concrete buried arches. Engineering Structures. 2013. 48. Pp. 716-726.
  • DOI: 10.1016/j.engstruct.2012.11.037
  • Kimura, T., Ohsaki, M., Fujita, S., Michiels, T., Adriaenssens, S. Shape optimization of no- tension arches subjected to in-plane loading. Structures. 2020. 28(August). Pp. 158-169.
  • DOI: 10.1016/j.istruc.2020.08.053
  • Misseri, G., Justin, M., Rovero, L. Experimental and numerical investigation of the collapse of pointed masonry arches under quasi-static horizontal loading. Engineering Structures. 2018. 173(October 2017). Pp. 180-190.
  • DOI: 10.1016/j.engstruct.2018.06.009
  • Pulatsu, B., Erdogmus, E., Lourenço, P.B. Comparison of in-plane and out-of-plane failure modes of masonry arch bridges using discontinuum analysis. Engineering Structures. 2019. 178(August 2018). Pp. 24-36.
  • DOI: 10.1016/j.engstruct.2018.10.016
  • Scozzese, F., Ragni, L., Tubaldi, E., Gara, F. Modal properties variation and collapse assessment of masonry arch bridges under scour action. Engineering Structures. 2019. 199(September). Pp. 109665.
  • DOI: 10.1016/j.engstruct.2019.109665
  • Smoljanović, H., Živaljić, N., Nikolić, Ž., Munjiza, A. Numerical analysis of 3D dry-stone masonry structures by combined finite-discrete element method. International Journal of Solids and Structures. 2018. 136-137. Pp. 150-167.
  • DOI: 10.1016/j.ijsolstr.2017.12.012
  • Zampieri, P., Simoncello, N., Tetougueni, C.D., Pellegrino, C. Review article A review of methods for strengthening of masonry arches with composite materials. Engineering Structures. 2018. 171(December 2017). Pp. 154-169.
  • DOI: 10.1016/j.engstruct.2018.05.070
  • Zampieri, P., Simoncello, N., Gonzalez-libreros, J., Pellegrino, C. Evaluation of the vertical load capacity of masonry arch bridges strengthened with FRCM or SFRM by limit analysis. Engineering Structures. 2020. 225(July). Pp. 111135.
  • DOI: 10.1016/j.engstruct.2020.111135
  • Dmitriev, A., Lalin, V., Novozhilov, Y., Mikhalyuk, D. Simulation of Concrete Plate Perforation by Coupled Finite Element and Smooth Particle Hydrodynamics Methods. Construction of Unique Buildings and Structures. 2020. 92(9207).
  • DOI: 10.18720/CUBS.92.7
  • Ribeiro, F., Sena-Cruz, J., Branco, F.G., Júlio, E. 3D finite element model for hybrid FRP- confined concrete in compression using modified CDPM. Engineering Structures. 2019. 190(April). Pp. 459-479.
  • DOI: 10.1016/j.engstruct.2019.04.027
  • Zani, G., Martinelli, P., Galli, A., di Prisco, M. Three-dimensional modelling of a multi-span masonry arch bridge: Influence of soil compressibility on the structural response under vertical static loads. Engineering Structures. 2020. 221(May). Pp. 110998.
  • DOI: 10.1016/j.engstruct.2020.110998
  • Zhao, C., Xiong, Y., Zhong, X., Shi, Z., Yang, S. A two-phase modeling strategy for analyzing the failure process of masonry arches. Engineering Structures. 2020. 212(March). Pp. 110525.
  • DOI: 10.1016/j.engstruct.2020.110525
  • Mohireva, A., Proskurovskis, A., Belousov, N., Nazinyan, A., Glebova, E. Strength and deformability of compressed-bent masonry structures during and after fire. Construction of Unique Buildings and Structures. 2020. 92(9203). Pp. 2-6.
  • DOI: 10.18720/CUBS.92.3
  • Thai, S., Thai, H.T., Vo, T.P., Patel, V.I. A simple shear deformation theory for nonlocal beams. Composite Structures. 2016. 183(1). Pp. 262-270.
  • DOI: 10.1016/j.compstruct.2017.03.022
  • Pydah, A., Batra, R.C. Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams. Composite Structures. 2017. 172. Pp. 45-60.
  • DOI: 10.1016/j.compstruct.2017.03.072
  • Tyukalov, Y.Y. Finite element model of Reisner's plates in stresses. Magazine of Civil Engineering. 2019. 5(89). Pp. 61-78.
  • DOI: 10.18720/MCE.89.6
  • Tyukalov, Y.Y. Calculation of circular plates with assuming shear deformations. IOP Conference Series: Materials Science and Engineering. 2019. 687(3). 10.1088/1757- 899X/687/3/033004.
  • DOI: 10.1088/1757-899X/687/3/033004
  • Tyukalov, Y.Y. Calculation of bending plates by finite element method in stresses. IOP Conference Series: Materials Science and Engineering. 2018. 451(1). 10.1088/1757- 899X/451/1/012046.
  • DOI: 10.1088/1757-899X/451/1/012046
  • Tyukalov, Y.Y. Equilibrium finite elements for plane problems of the elasticity theory. Magazine of Civil Engineering. 2019. 91(7). Pp. 80-97.
  • DOI: 10.18720/MCE.91.8
  • Tyukalov, Y.Y. The functional of additional energy for stability analysis of spatial rod systems. Magazine of Civil Engineering. 2017. 70(2).
  • DOI: 10.18720/MCE.70.3
Статья научная