Новые возможности оценки сократимости левого желудочка методом двухмерной speckle tracking эхокардиографии

Автор: Олейников В.Э., Смирнов Ю.Г., Галимская В.А., Гундарев Е.А., Бурко Н.В.

Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk

Рубрика: Клинические исследования

Статья в выпуске: 3 т.35, 2020 года.

Бесплатный доступ

Рассматриваются причины, по которым характеристики сократимости левого желудочка (ЛЖ), в частности пиковые показатели глобальной продольной деформации (GLS), полученные с помощью 2D спекл-эхокардиографии (ЭхоКГ), не получили широкого распространения в клинической практике. Проанализированы новые показатели, предложенные для оценки сократительной функции ЛЖ на основе продольной деформации, с учетом вклада отдельных сегментов. Показано, что перспективным направлением изучения контрактильной функции ЛЖ является определение показателей миокардиальной работы, характеризующей взаимосвязь между сократительной и насосной функцией. Представлен анализ постсистолического индекса деформации (Post systolic Strain Index - PSI), клиническое применение которого нашло отражение в работах по изучению жизнеспособного миокарда в условиях ишемии и для оценки эффективности ресинхронизирующей терапии (СRT).

Еще

Глобальная продольня деформация, сегментарная продольная деформация, 2d спекл-трекинг, эхокардиография, миокардиальная работа, постсистолическое сокращение миокарда

Короткий адрес: https://sciup.org/149126198

IDR: 149126198   |   DOI: 10.29001/2073-8552-2020-35-3-79-85

Список литературы Новые возможности оценки сократимости левого желудочка методом двухмерной speckle tracking эхокардиографии

  • Codreanu I., Pegg T., Selvanayagam J.B., Robson M., Rider O.J., Dasa-nu C.A. et al. Normal values of regional and global myocardial wall motion in young and elderly individuals using navigator gated tissue phase mapping. Аде (Dordr.). 2014;36(1):231-241. DOI: 10.1007/s11357-013-9535-x.
  • Fabiani I., Pugliese N.R., Santini V., Conte L., Bello V. Speckle-tracking imaging, principles and clinical applications: A review for clinical cardiologists. Intech. Open. 2016:104. DOI: 10.5772/64261.
  • Baicu C.F., Zile M.R., Aurigemma G.P., Gaasch W.H. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation. 2005;111:2306-2312. DOI: 10.1161/01. CIR.0000164273.57823.26.
  • Owan T.E., Hodge D.O., Herges R.M., Jacobsen S.J., Roger V.L., Redfield M.M. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 2006;355:251-259. DOI: 10.1056/NEJMoa052256.
  • Redfield M.M., Jacobsen S.J., Burnett J.C. Jr., Mahoney D.W., Bailey K.R., Rodeheffer R.J. Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194-202. DOI: 10.1001/jama.289.2.194.
  • Borlaug B.A., Paulus W.J. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur. Heart J. 2011;32(6):670-679. DOI: 10.1093/eurheartj/ehq426.
  • Oleinikov V., Galimskaya V., Golubeva A., Kupriyanova S. Global strain of left ventricular myocardium and ejection fraction in STEMI patients. Eur. J. Heart Failure. 2018;20(S1):40.
  • Galimskaya V., Kupriyanova S., Dolgarev I., Golubeva A., Oleinikov V. The heart contractile function and left ventricular ejection fraction in patients with ST-segment elevation myocardial infarction. Eur. J. Prevent. Cardiology. 2018;25(2):s19.
  • Mor-Avi V., Lang R.M., Badano L.P., Belohlavek M., Cardim N.M., Derumeaux G. et al. Current and evolving echocardiography techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J. Am. Soc. Echocardiogr. 2011;24(3):277-313. DOI: 10.1016/j.echo.2011.01.015.
  • Kvisvik B., Aagaard E.N., M0rkrid L., R0sj0 H., Lyngbakken M., Smeds-rud M.K. et al. Mechanical dispersion as a marker of left ventricular dysfunction and prognosis in stable coronary artery disease. Int. J. Car-diovasc. Imaging. 2019;35(7):1265-1275. DOI: 10.1007/s10554-019-01583-z.
  • Al Saikhan L., Park C., Hardy R., Hughes A. Prognostic implications of left ventricular strain by speckle-tracking echocardiography in the general population: A meta-analysis. Wasc. Health Risk Manag. 2019;15:229-251. DOI: 10.2147/VHRM.S206747.
  • Voigt J.U., Pedrizzetti G., Lysyansky P., Marwick T.H., Houle H., Baumann R. et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardio-vasc. Imaging. 2015;16(1):1-11. DOI: 10.1016/j.echo.2014.11.003.
  • Chimura M., Yamada S., Yasaka Y., Kawai H. Improvement of left ventricular function assessment by global longitudinal strain after successful percutaneous coronary intervention for chronic total occlusion. PLoS One. 2019;14(6):e0217092. DOI: 10.1371/journal.pone.0217092.
  • Oleynikov V.E., Galimskaya V.A., Kupriyanova S.N., Burko N.V. Use of the Speckle tracking method for determining global parameters of heart contractility in healthy individuals. Methods X. 2018;5:125-135. DOI: 10.1016/j.mex.2018.01.011.
  • Lim P., Buakhamsri A., Popovic Z.B., Greenberg N.L., Patel D., Thomas J.D. et al. Longitudinal strain delay index by speckle tracking imaging a new marker of response to cardiac resynchronization therapy. Circulation. 2008;118(11):1130-1137. DOI: 10.1161/CIRCULATI0NA-HA.107.750190.
  • Aurigemma G.P., Zile M.R., Gaasch W.H. Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation. 2006;113(2):296-304. DOI: 10.1161/CIRCULATIO-NAHA.104.481465.
  • Chan J., Edwards N.F.A., Khandheria B.K., Shiino K., Sabapathy S., Anderson B. et al. A new approach to assess myocardial work by noninvasive left ventricular pressure-strain relations in hypertension and dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging. 2019;20(1):31-39. DOI: 10.1093/ehjci/jey131.
  • Russell K., Eriksen M., Aaberge L., Wilhelmsen N., Skulstad H., Gjes-dal O. et al. Assessment of wasted myocardial work: A novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am. J. Physiol. Heart Circ. Physiol. 2013;305(7): H996-1003. DOI: 10.1152/ajpheart.00191.2013.
  • Chung C.S., Shmuylovich L., Kovacs S.J. What global diastolic function is, what it is not, and how to measure it. Am. J. Physiol. Heart Circ. Physiol. 2015;30(9):H1392-406. DOI: 10.1152/ajpheart.00436.2015.
  • Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37(27):2129-2200. DOI: 10.1093/eurheartj/ehw128.
  • Scheffer M.G., van Dessel P.F., van Gelder B.M., Sutherland G.R., van Hemel N.M. Peak longitudinal strain delay is superior to TDI in the selection of patients for resynchronisation therapy. Neth. Heart J. 2010;18(12):574-582. DOI: 10.1007/s12471-010-0838-6.
  • Ozawa K., Funabashi N., Nishi T., Takahara M., Fujimoto Y., Kamata T. et al. Differentiation of infarcted, ischemic, and non-ischemic LV myocardium using post-systolic strain index assessed by resting two-dimensional speckle tracking transthoracic echocardiography. Int. J. Cardiol. 2016;219:308-311. DOI: 10.1016/j.ijcard.2016.06.007.
  • Ozawa K., Funabashi N., Nishi T., Takahara M., Fujimoto Y., Kamata T. et al. Resting multilayer 2D speckle-tracking TTE for detection of ischemic segments confirmed by invasive FFR part-2, using post-systolic-strain-index and time from aortic-valve-closure to regional peak longitudinal-strain. Int. J. Cardiol. 2016;217:149-155. DOI: 10.1016/j. ijcard.2016.04.153.
  • Celutkiene J., Sutherland G.R., Laucevicius A., Zakarkaite D., Rudys A., Grabauskiene V. Is post-systolic motion the optimal ultrasound parameter to detect induced ischaemia during dobutamine stress echocardiography? Eur. Heart J. 2004;25(11):932-942. DOI: 10.1016/j. ehj.2004.04.005.
  • Kukulski T., Jamal F., Herbots L., D'hooge J., Bijnens B., Hatle L. et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements: A clinical study in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol. 2003;41(5):810-819. DOI:10.1016/s0735-1097(02)02934-0.
  • Hosokawa H., Sheehan F.H., Suzuki T. Measurement of postsystol-ic shortening to assess viability and predict recovery of left ventricular function after acute myocardial infarction. J. Am. Coll. Cardiol. 2000;35(7):1842-1849. DOI: 10.1016/s0735-1097(00)00634-3.
  • EekC., Grenne B., Brunvand H., Aakhus S., Endresen K., Smiseth O.A. et al. Postsystolic shortening is a strong predictor of recovery of systolic function in patients with non-ST-elevation myocardial infarction. Eur. J. Echocardiogr. 2011;12(7):483-489. DOI: 10.1093/ejechocard/jer055.
  • Takayama M., Norris R.M., Brown M.A., Armiger L.C., Rivers J.T., White H.D. Postsystolic shortening of acutely ischemic canine myocardium predicts early and late recovery of function after coronary artery reperfusion. Circulation. 1988;78(4):994-1007. DOI: 10.1161/01.cir.78.4.994.
  • Skulstad H., Edvardsen T., Urheim S., Rabben S.I., Stugaard M., Ly-seggen E. et al. Postsystolicshortening in ischemic myocardium. Active contraction or passive recoil? Circulation. 2002;106(6):718-724. DOI: 10.1161/01.CIR.0000024102.55150.
  • Brainin P., Skaarup K.G., Iversen A.Z., Jorgensen P.G., Platz E., Jensen J.S. et al. Post-systolic shortening predicts heart failure following acute coronary syndrome. Int. J. Cardiology. 2019;276:191-197. DOI: 10.1016/j.ijcard.2018.11.106.
  • Lim P., Mitchell-Heggs L., Buakhamsri A., Thomas J.D., Grimm R.A. Impact of left ventricular size on tissue Doppler and longitudinal strain by speckle tracking for assessing wall motion and mechanical dyssyn-chrony in candidates for cardiac resynchronization therapy. J. Am. Soc. Echocardiogr. 2009;22(6):695-701. DOI: 10.1016/j.echo.2009.04.015.
  • Chung E.S., Leon A.R., Tavazzi L., Sun J.P., Nihoyannopoulos P., Merlino J. et al. Results of the predictors of response to CRT (Prospect) trial. Circulation. 2008;117(20):2608-2616. DOI: 10.1161/CIROJLATIONA-HA.107.743120.
  • Boe E., Skulstad H., Smiseth O.A. Myocardial work by echocardiography: a novel method ready for clinical testing. Eur. Heart J. Cardiovasc. Imaging. 2019;20(1):18-20. DOI: 10.1093/ehjci/jey156.
  • Boe E., Smiseth O.A., Storsten P., Andersen O.S., Aalen J., Eriksen M. et al. Left ventricular end-systolic volume is a more sensitive marker of acute response to cardiac resynchronization therapy than contractility indices: insights from an experimental study. Europace. 2019;21(2):347-355. DOI: 10.1093/europace/euy221.
  • Suga H., Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Cir. Res. 1974;35(1):117-126. DOI: 10.1161/01.res.35.1.117.
  • Foex P., Leone B.J. Pressure-volume loops: A dynamic approach to the assessment of ventricular function. J. Cardiothorac. Vasc. Anesth. 1994;8(1):84-96. DOI: 10.1016/1053-0770(94)90020-5.
  • Russell K., Eriksen M., Aaberge L., Wilhelmsen N., Skulstad H., Rem-me E.W. et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocar-dial work. Eur. Heart J. 2012;33(6):724-733. DOI: 10.1093/eurheartj/ ehs016.
  • Manganaro R., Marchetta S., Dulgheru R., Ilardi F., Sugimoto T., Robinet S. et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study. Eur. Heart J.Cardiovasc. Imaging. 2018;20(5):582-590. DOI: 10.1093/ehjci/ jey188.
  • Galli E., Hubert A., Le Rolle V., Hernandez A., Smiseth O.A., Mabo P. et al. Myocardial constructive work and cardiac mortality in resynchronization therapy candidates. Am. Heart J. 2019;212:53-63. DOI: 10.1016/j. ahj.2019.02.008.
  • Galli E., Leclercq C., Fournet M., Hubert A., Bernard A., Smiseth O.A. et al. Value of myocardial work estimation in the prediction of response to cardiac resynchronization therapy. J. Am. Soc. Echocardiogr. 2018;31(2):220-230. DOI:10.1016/j.echo.2017.10.009.
  • Van der Bijl P., Vo N.M., Kostyukevich M.V., Mertens B., Marsan N.A., Delgado V. et al. Prognostic implications of global, left ventricular myo-cardial work efficiency before cardiac resynchronization therapy. Eur. Heart J.Cardiovasc. Imaging. 2019;20(12):1388-1394. DOI: 10.1093/ ehjci/jez095.
  • Manganaro R., Marchetta S., Dulgheru R., Sugimoto T., Tsugu T., Ilardi F. et al. Correlation between non-invasive myocardial work indices and main parameters of systolic and diastolic function: results from the EACVI NORRE study. Eur. Heart J.Cardiovasc. Imaging. 2020;21(5):533-541. DOI: 10.1093/ehjci/jez203.
  • Boe E., Russell K., Eek C., Eriksen M., Remme E.W., Smiseth O.A. et al. Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging. 2015;16(1):1247-1255. DOI: 10.1093/ehjci/jev078.
  • Mahdiui E.M., van der Bij P., Abou R., Ajmone M.N., Delgado V., Bax J.J. Global left ventricular myocardial work efficiency in healthy individuals and patients with cardiovascular disease. J. Am. Soc. Echocardiogr. 2019;32(9):1120-1127. DOI: 10.1016/j.echo.2019.05.002.
Еще
Статья научная