New mutation of the TP53 gene associated with the hereditary breast cancer in a young tuvinian woman

Автор: Gervas Polina A., Molokov Aleksey Yu., Zarubin Aleksei A., Ponomareva Anastasia A., Babyshkina Nataliya N., Belyavskaya Valentina A., Pisareva Lubov F., Choynzonov Evgeny L., Cherdyntseva Nadezda V.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Случай из клинической практики

Статья в выпуске: 6 т.20, 2021 года.

Бесплатный доступ

Background. The identification of the ethnospecific mutations associated with hereditary breast cancer remains challenging. Next generation sequencing (NGS) technology fully enables the compilation of germline variants associated with the risk for inherited diseases. Despite the success of the NGS, up to 20 % of molecular tests report genetic variant of unknown significance (VUS) or novel variants that have never been previously described and their clinical significances are unknown. To obtain extended information about the variants of the unknown significance, it is necessary to use an alternative approach for the analysis of the NGS data. To obtain extended characteristic about the unknown significance variants, it is necessary to search for additional tools for the analysis of the NGS data. Material and Methods. We reclassified the mutation of the unknown significance using the ActiveDriveDB database that assessed the effect of mutations on sites of post-translational modifications, and the ProteinPaint tool that complemented the existing cancer genome portals and provided a comprehensive and intuitive view of cancer genomic data. Results. in this study, we report a 44-year-old Tuvinian woman with a family history of breast cancer. Based on the NGS data, mutational analysis revealed the presence of the LRG_321t1: c.80C>T heterozygous variant in exon 2, which led to the proline to leucine change at codon 27 of the protein. in the dbPubMed database, this mutation was determined as unknown significance due to data limitation. According to the data of the ActiveDriverDB tool, this mutation is located distally at the site of post-translational protein modification, which is responsible for binding to kinases that regulate genes of the cell cycle, etc. (ATM, CHEK2, CDK, MAPK). in accordance with ProteinPaint tool, the LRG_321t1: c.80C>T mutation is located in functionally specialized transactivation domains and codon of the TP53 gene, where the pathogenic mutation associated with Li-Fraumeni syndrome has been earlier described. Conclusion. This report is the first to describe a new variant in the TP53 gene (rs1555526933), which is likely to be associated with hereditary cancer-predisposing syndrome, including Li-Fraumeni syndrome, in a Tuvinian BC patient with young-onset and familial BC.

Еще

Germline mutation, breast cancer, small nationality of Russia, ethnic group, tuvinian

Короткий адрес: https://sciup.org/140261348

IDR: 140261348   |   DOI: 10.21294/1814-4861-2021-20-6-164-170

Список литературы New mutation of the TP53 gene associated with the hereditary breast cancer in a young tuvinian woman

  • Sokolenko A.P., Preobrazhenskaya E.V., Aleksakhina S.N., Iyevleva A.G., Mitiushkina N.V., Zaitseva O.A., Yatsuk O.S., Tiurin V.I., Strelkova T.N., Togo A.V., Imyanitov E.N. Candidate gene analysis of BRCA1/2 mutationnegative high-risk Russian breast cancer patients. Cancer Lett. 2015; 359(2): 259–61. doi: 10.1016/j.canlet.2015.01.022.
  • Plon S.E., Eccles D.M., Easton D., Foulkes W.D., Genuardi M., Greenblatt M.S., Hogervorst F.B., Hoogerbrugge N., Spurdle A.B., Tavtigian S.V.; IARC Unclassified Genetic Variants Working Group. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008 Nov; 29(11): 1282–91. doi: 10.1002/humu.20880. PMID: 18951446; PMCID: PMC3075918.
  • Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May; 17(5): 405–24. doi: 10.1038/gim.2015.30.
  • Cherdyntseva N.V., Pisareva L.F., Ivanova A.A., Panferova Y.V., Malinovskaya E.A., Odintsova I.N., Doroshenko A.V., Gervas P.A., Slonimskaya E.M., Shivit-ool A.A., Dvornichenko V.V., Choinzonov Y.L. Ethnic aspects of hereditary breast cancer in the region of Siberia. Vestn Ross Akad Med Nauk. 2014; 11–12: 72–9. doi: 10.15690/vramn.v69i11-12.1186. [Article in Russian].
  • Eccles D.M. Hereditary cancer: guidelines in clinical practice. Breast and ovarian cancer genetics. Ann Oncol. 2004; 15 Suppl 4: iv133-8. doi: 10.1093/annonc/mdh917.
  • Slatko B.E., Gardner A.F., Ausubel F.M. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018; 122(1): e59. doi: 10.1002/cpmb.59.
  • Van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., Banks E., Garimella K.V., Altshuler D., Gabriel S., DePristo M.A. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43(1110): 11.10.1–11.10.33. doi: 10.1002/0471250953.bi1110s43.
  • DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., McKenna A., Fennell T.J., Kernytsky A.M., Sivachenko A.Y., Cibulskis K., Gabriel S.B., Altshuler D., Daly M.J. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May; 43(5): 491–8. doi: 10.1038/ng.806.
  • McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010 Sep; 20(9): 1297–303. doi: 10.1101/gr.107524.110.
  • Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat Methods. 2010 Apr; 7(4): 248–9. doi: 10.1038/nmeth0410-248.
  • Schwarz J.M., Cooper D.N., Schuelke M., Seelow D. Mutation-Taster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014 Apr; 11(4): 361–2. doi: 10.1038/nmeth.2890.
  • Kumar P., Henikoff S., Ng P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols. 2009; 4(7): 1073–81. doi.org/10.1038/nprot.2009.86.
  • Kato S., Han S.Y., Liu W., Otsuka K., Shibata H., Kanamaru R., Ishioka C. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003; 100(14): 8424–9. doi.org/10.1073/pnas.1431692100.
  • Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules. 2021; 11(2): 247. doi.org/10.3390/biom11020247.
  • Krassowski M., Paczkowska M., Cullion K., Huang T., Dzneladze I., Ouellette B., Yamada J.T., Fradet-Turcotte A., Reimand J. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins. Nucl Acids Res. 2018; 46(D1): D901–D910. doi.org/10.1093/nar/gkx973.
  • Murakami I., Fujiwara Y., Yamaoka N., Hiyama K., Ishioka S., Yamakido M. Detection of p53 gene mutations in cytopathology and biopsy specimens from patients with lung cancer. Am J Resp Crit Care Med. 1996; 154(4 Pt 1): 1117–23. doi.org/10.1164/ajrccm.154.4.8887616.
  • Heide I., Thiede C., Sonntag T., de Kant E., Neubauer A., Jonas S., Peter F.J., Neuhaus P., Herrmann R., Huhn D., Rochlitz C.F. The status of p53 in the metastatic progression of colorectal cancer. Eur J Cancer. 1997; 33(8): 1314–22. doi.org/10.1016/s0959-8049(97)00118-4.
  • Sullivan K.D., Galbraith M.D., Andrysik Z., Espinosa J.M. Mechanisms of transcriptional regulation by p53. Cell Death Diff. 2018; 25(1): 133–43. doi.org/10.1038/cdd.2017.174.
  • Yurgelun M.B., Masciari S., Joshi V.A., Mercado R.C., Lindor N.M., Gallinger S., Hopper J.L., Jenkins M.A., Buchanan D.D., Newcomb P.A., Potter J.D., Haile R.W., Kucherlapati R., Syngal S.; Colon Cancer Family Registry. Germline TP53 Mutations in Patients With Early-Onset Colorectal Cancer in the Colon Cancer Family Registry. JAMA Oncol. 2015 May; 1(2): 214–21. doi: 10.1001/jamaoncol.2015.0197.
  • Palmero E.I., Schüler-Faccini L., Caleffi M., Achatz M.I., Olivier M., Martel-Planche G., Marcel V., Aguiar E., Giacomazzi J., Ewald I.P., Giugliani R., Hainaut P., Ashton-Prolla P. Detection of R337H, a germline TP53 mutation predisposing to multiple cancers, in asymptomatic women participating in a breast cancer screening program in Southern Brazil. Cancer Lett. 2008 Mar 8; 261(1): 21–5. doi: 10.1016/j.canlet.2007.10.044.
Еще
Статья научная