Monitoring and protection of sewer tunnels in difficult ground conditions with increasing anthropogenic impact

Автор: Perminov Nikolai Alekseevich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (102), 2022 года.

Бесплатный доступ

The object of research. Long-term operation of sewer tunnels in difficult engineering and geological conditions creates the danger of violating their structural safety. A long-term study of the changes’ dynamics in the technical state of the tunnels made it possible to establish the patterns of intense anthropogenic and dynamic influences on this process. Method. The developed discrete and continuous diagnostic models of the defects’ development in the tunnels’ structures make it possible to identify potentially hazardous areas subject to the manifestation of critical failures and methods of their localization. On the basis of numerical modeling, the boundaries of defect-free joint operation of the system “source of impact - geo-mass - sewer tunnel” have been determined. Results. With increasing external anthropogenic and dynamic impacts, modeling zones of urban areas with potentially dangerous sections of underground sewage facilities is the basis for the development of regulatory documents on monitoring methods and safe development geotechnical infrastructure.

Еще

Monitoring, tunnel, weak soils, anthropogenic impacts, protection

Короткий адрес: https://sciup.org/143179048

IDR: 143179048   |   DOI: 10.4123/CUBS.102.5

Список литературы Monitoring and protection of sewer tunnels in difficult ground conditions with increasing anthropogenic impact

  • Salemi A, Mikaeil R, Haghshenas SS. Integration of Finite Difference Method and Genetic Algorithm to Seismic analysis of Circular Shallow Tunnels (Case Study: Tabriz Urban Railway Tunnels). KSCE J Civ Eng 2018; P. 1978–90. https://doi.org/10.1007/s12205-017-2039-y.
  • Alexeev M.I., Baranov L.A., Ermolin Yu.A. Risk-based approach to evaluate the reliability of a city sewer network // Water and Ecology: Problems and Solutions. 2020. №3 (83). P. 3-7. DOI: 10.23968/2305-3488.2020.25.3.3-7.
  • Perminov A., Perminov N. Geotechnical and geo ecological fundamentals of sustainable life cycle of unique long-operated underground structures of water disposal systems in difficult soil conditions (the experience of St. Petersburg) // Geotechnics fundamentals and applications in construction: new materials, structures, technologies and calculations Proceedings of the International Conference on Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations, GFAC 2019. P. 231-234. DOI: 10.1201/9780429058882-45.
  • Dashko R.E., Shashkin A.G., Shashkin K.G. Analysis of causes of deformations in historic buildings on weak clay soils // Geotechnics fundamentals and applications in construction: new materials, structures, technologies and calculations Proceedings of the International Conference on Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations, GFAC 2019. P. 231-234. DOI: 10.1201/9780429058882-64.
  • Voznesensky E.A., Sentsova E.A., Nikitin M.S. 2019. Sandy soils dynamic strength parameters according to triaxial tests // Engineering Geology. 2019. №2. Т.14. P. 24-33. DOI: 10.25296/1993-5056-2019-14-2-24-33.
  • Il'ichev V.A., Nikiforova N.S. Methods for the determination of curvatures and the difference between the slopes of foundations as the criteria of deformation of the basements of buildings and structures // Soil Mechanics and Foundation Engineering. 2018. Т. 55. № 3. P. 168-172. DOI: 10.1007/s11204-018-9521-5.
  • Dashko R.E., Аlekseev I.V. Main features of engineering-geological and geotechnical research of microbiota influence on hard rocks in the urban underground space // Conference Proceedings. 19th International Multidisciplinary Scientific Geoconference Sgem. 2019. P. 369-376. DOI: 10.5593/sgem2019/1.2/S02.047.
  • Voznesensky E.A., Usov A.N., Chernov M.S., Sokolov V.N. Variation in the Microstructure of Clay Soil during Deformation under Triaxial Compression with Consideration of the Occurrence of Deformation Instability // Moscow University Geology Bulletin. 2018. №1. P. 83-86. DOI: 10.3103/S014587521801012X.
  • Ponomaryov A.B., Kaloshina S.V., Zakharov A.V., Bezgodov M.A., Shenkman R.I. and Zolotozubov D.G. Results of geotechnical modeling of the influence of construction of the large foundation ditch on the existing historical building Japanese // Geotechnical Society Special Publication: the 15th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering: Geotechnical Heritage. Part 2 (TC 301/ATC 19 Session) 2015. Vol№ 78. P. 2676-2679. DOI:10.15593/2224-9826/2014.4.18.
  • Perminov N. Unsteady interaction simulation of a large rc shell with heterogeneous soil milieu for a gradually increasing caisson structure // IOP conference series: materials science and engineering Institute of Physics Publishing. 2018. P. 012059. DOI: 10.1088/1757-899X/456/1/012059.
  • Perminov N. Simulation of defectless lifecycle of unique underground structures of the sewage system at the stage of their construction in difficult soil conditions // International Journal for Computational Civil and Structural Engineering Publishing House ASV, LTD (Moscow). 2019. Т. 15. № 1. P. 119-130. DOI: 10.22337/2587-9618-2019-15-1-119-130.
  • Voznesensky E.A., Kushnareva E.S. Methodological aspects of experimental evaluation of dynamic stability of sands in geotechnical survey // Article in the proceedings of the conference. Saint Petersburg 2008: Geosciences - From New Ideas to New Discoveries. 2008. DOI:10.3997/2214-4609.20146895.
  • Mangushev R.A., Osokin A.I. The experience of the underground construction for the complex of buildings on a soft soil in the center of St. Petersburg // International Journal for Computational Civil and Structural Engineering. 2020. Т. 16. № 3. P. 47-53. DOI: 10.22337/2587-9618-2020-16-3-47-53.
  • Merzlyakov V.P., Vlasov A.N. Effect of polygonal crack nets on the deformation characteristics of rocks // Soil mechanics and foundation engineering. 1993. № 30(3). P. 85-91. DOI: 10.1007/BF01712792.
  • Frolov, Y.S., Konkov, A.N., Larionov, A.A. Scientific Substantiation of Constructive-technological Parameters of St. Petersburg Subway // Underground Structures Procedia Engineering, 189. 2017. PP 673-680. DOI: 10.1016/j.proeng.2017.05.107
  • Ledyaev, A., Kavkazskiy, V., Vatulin, Y., Svitin, V., Shelgunov, O. Mathematical modeling of aerodynamic processes in railway tunnels on high-speed railways // E3S Web of Conferences, 157, 6017 (2020). DOI: 10.1051/e3sconf/202015706017.
  • Karasev M.A., Tai Tien N., Vil'ner M.A. Forecast of the stress-strain state of the prefabricated lining of underground tunnels of curvilinear cross-section // Bulletin of the Ural State Mining University. 2019. № 4 (56). P. 90-97.DOI: 10.21440/2307-2091-2019-4-90-97.
  • Perelmuter A.V., Fialko S.Y. Inelastic analysis of reinforced concrete structures in SCAD // International Journal for Computational Civil and Structural Engineering Publishing House ASV, LTD (Moscow). 2019. Т. 15. № 1. P. 54-60. DOI: 10.22337/2587-9618-2019-15-1-54-60.
  • Protosenya A.G., Karasev M.A., Belyakov N.A., Lebedev M.O. Geomechanics of low-subsidence construction during the development of underground space in large cities and megalopolises // International Journal of Mechanical and Production Engineering Research and Development. 2019. Т. 9. № 5. P. 1005-1014. DOI: 10.24247/ijmperdoct201989.
  • Barabash M., Bashinsky Y., Korjakins A. Stress-strain state of the structure in the service area of underground railway // In the collection: IOP Conference Series: Materials Science and Engineering. 2017. P. 012100. DOI: 10.1088/1757-899X/251/1/012100.
  • Mikaeil R, Bakhshinezhad H, Haghshenas SS, Ataei M. Stability analysis of tunnel support systems using numerical and intelligent simulations (case study: kouhin tunnel of qazvin-rasht railway). Rud Zb 2019; 34:1–11. https://doi.org/10.17794/rgn.2019.2.1
  • Jalilvand P, Haghshenas SS, Haghshenas SS, Javan MH. Evaluation of Dynamic Resistance of the Toyserkan Doolayi Tunnel by Rock Bolt and Reinforced Shotcrete Composite System. Tunneling Undergr. Constr., Reston, VA: American Society of Civil Engineers; 2014, p. 376–84. https://doi.org/10.1061/9780784413449.037.
  • Park J, Chung H, Moon J-B, Choi H, Lee I-M. Overall risk analysis of shield TBM tunnelling using Bayesian Networks (BN) and Analytic Hierarchy Process (AHP). J Korean Tunn Undergr Sp Assoc 2016. https://doi.org/10.9711/ktaj.2016.18.5.453
  • Swannell N, Palmer M, Barla G, Barla M. Geotechnical risk management approach for TBM tunnelling in squeezing ground conditions. Tunn Undergr Sp Technol 2016. https://doi.org/10.1016/j.tust.2016.01.013.
  • Zare Naghadehi M, Benardos A, Javdan R, Tavakoli H, Rojhani M. The probabilistic time and cost risk analysis of a challenging part of an urban tunneling project. Tunn Undergr Sp Technol 2016. https://doi.org/10.1016/j.tust.2016.04.007.
  • Paraskevopoulou C, Boutsis G. Cost overruns in tunnelling projects: Investigating the impact of geological and geotechnical uncertainty using case studies. Infrastructures 2020. https://doi.org/10.3390/INFRASTRUCTURES5090073.
  • Wang S, Li L, Cheng S. Risk assessment of collapse in mountain tunnels and software development. Arab J Geosci 2020;13. https://doi.org/10.1007/s12517-020-05520-6.
  • Xu Z, Cai N, Li X, Xian M, Dong T. Risk assessment of loess tunnel collapse during construction based on an attribute recognition model. Bull Eng Geol Environ 2021. https://doi.org/10.1007/s10064-021-02300-8.
  • Mikaeil R, Shaffiee Haghshenas S, Sedaghati Z. Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel). Nat Hazards 2019;97: 1099–113. https://doi.org/10.1007/s11069-019-03688-z.
  • Ahmadi S, Moosazadeh S, Hajihassani M, Moomivand H, Rajaei MM. Reliability, availability and maintainability analysis of the conveyor system in mechanized tunneling. Meas J Int Meas Confed 2019. https://doi.org/10.1016/j.measurement.2019.06.009.
  • Cao BT, Obel M, Freitag S, Heußner L, Meschke G, Mark P. Real-Time Risk Assessment of Tunneling-Induced Building Damage Considering Polymorphic Uncertainty. ASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng 2022. https://doi.org/10.1061/ajrua6.0001192.
  • Haghshenas SS, Barmal M, Farzan N. Utilization of soft computing for risk assessment of a tunneling project using geological units. Civ Eng J 2016; P:358–64.
  • Naderpour H, Nagai K, Fakharian P, Haji M. Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Compos Struct 2019; 215, P:69–84. https://doi.org/10.1016/j.compstruct.2019.02.048.
  • Hasanipanah M, Golzar SB, Larki IA, Maryaki MY, Ghahremanians T. Estimation of blast-induced ground vibration through a soft computing framework. Eng Comput 2017. https://doi.org/10.1007/s00366-017-0508-z.
  • Wang S, Li L ping, Shi S, Cheng S, Hu H, Wen T. Dynamic Risk Assessment Method of Collapse in Mountain Tunnels and Application. Geotech Geol Eng 2020. https://doi.org/10.1007/s10706- 020-01196-7.
  • Nezarat H, Sereshki F, Ataei M. Ranking of geological risks in mechanized tunneling by using Fuzzy Analytical Hierarchy Process (FAHP). Tunn Undergr Sp Technol 2015. https://doi.org/10.1016/j.tust.2015.07.019.
  • Hajihassani M, Jahed Armaghani D, Kalatehjari R. Applications of Particle Swarm Optimization in Geotechnical Engineering: A Comprehensive Review. Geotech Geol Eng 2018;36:705–22. https://doi.org/10.1007/s10706-017-0356-z.
  • Wu Z, Wu S, Cheng Z. Discussion and application of a risk assessment method for spalling damage in a deep hard-rock tunnel. Comput Geotech 2020. https://doi.org/10.1016/j.compgeo.2020.103632.
Еще
Статья научная