Molecular and dynamic simulation of low-temperature deformation of explicit atom model of glassy polymethylene

Автор: Mazo Mikhail Abramovich, Strelnikov Ivan Aleksandrovich, Balabaev Nikolay Kirillovich, Gusarova Elena Aleksandrovna, Oleynik Eduard Fedorovich, Berlin Aleksandr Aleksandrovich

Журнал: НБИ технологии @nbi-technologies

Рубрика: Технико-технологические инновации

Статья в выпуске: 2 (17), 2015 года.

Бесплатный доступ

Molecular dynamics simulation of glassy polymethylene (PM) plastic deformation is performed up to  = 30 % in uniaxial compression and 60 % in tensile regimes at a temperature of 50 K, which is ~140 K below Tg of the polymer. All atoms of PM chains are represented explicitly. Calculations were performed for two series of samples with different molecular mass distribution of chains. Each sample contains 12 288 -CH2- monomeric units per computational sell. Contribution from various interactions to potential energy of the system was investigated. Nonaffine displacements of methylene groups and conformational rearrangements in chains during deformation are visualized and analyzed. The transformation of relative fragments of chains up to 16-20 monomer units length are basic structural units, nonconformational displacements of which control plastic process. Relatively large nonaffine displacements are observed even in the range of low strains, which are usually interpreted as Hookean strains. In the range of yield tooth and steady plastic flow, the number of these displacements increases along with their amplitude. Conformational set of PM chains does not show a serious change during deformation. Analysis had shown that the number of conformational rearrangements of trans-gauche type in PM chains during deformation is small and such rearrangements do not play decisive role in the considered range of PM plasticity, even at  > 15 %, at the stage of the developed plastic flow.

Еще

Polymethylene, potential energy, plastic deformation, molecular mass, fragments of chains, low strains

Короткий адрес: https://sciup.org/14968391

IDR: 14968391   |   DOI: 10.15688/jvolsu10.2015.2.5

Список литературы Molecular and dynamic simulation of low-temperature deformation of explicit atom model of glassy polymethylene

  • Allen M.P., Tildesley D.J. Computer Simulation of Liquids. Clarendon, Oxford, 1987. 520 р.
  • Argon A.S. Plastic Deformation in Metallic Glasses. Acta. Metall., 1979, no. 27, p. 47.
  • Argon A.S. A Theory for the Low-Temperature Plastic Deformation of Glassy Polymers. Philos. Mag., 1973, no. 28, p. 939.
  • Argon A.S., Demkowicz M.J. Atomistic Modelling of Plastic Deformation of Glassy Polymers. Philos. Mag., 2006, no. 86, p. 4153.
  • Argon A.S., Mott P.H., Suter U.W. Simulation of Plastic Deformations in a Flexible Chain Glassy Polymer. Phys. Status Solidi B, 1992, no. 172, p. 193.
  • Argon A.S. The Physics of Deformation and Fracture of Polymers. New York, Cambridge University Press, 2013. 235 p.
  • Bailey N., Schiotz J., Jacobsen K. Atomistic Simulation Study of the Shear Band Deformation Mechanism in Mg"Cu Metallic Glasses. Phys. Rev. B: Condens. Matter., 2006, no. 73, p. 064108.
  • Balabaev N.K., Mazo M.A., Lyulin A.V., Oleinik E.F. Plastic Deformation of Glassy PM: Computer Aided Molecular Dynamic Simulation. Polym. Sci., Ser. A, 2010, no. 52, p. 633.
  • Baron A.A, Bakhracheva Yu.S. The Method for Lifetime Estimation Through the Mechanical Properties in Tension. Mechanika (Kaunas), 2004, no. 3, pp. 29-32.
  • Barrat J.L., Baschnagel J., Lyulin A., Molecular Dynamics Simulations of Glassy Polymers. Soft Matter., 2010, no. 6, p. 3430.
  • Berendsen H.J.C., Postma J.P.M., Gunsteren W.F., Di Nola A., Haak J.R. Molecular Dynamics With Coupling to an External Bath. J. Chem. Phys., 1984, no. 81, p. 3684.
  • Berthier L. Dynamic Heterogeneity in Amorphous Materials. Physics, 2011, no. 4, p. 42.
  • Bouchbinder E., Langer J.C., Procaccia I. A Thermal Shear-Transformation-Zone Theory of Amorphous Plastic Deformation. II. Analysis of Simulated Amorphous Silicon. Phys. Rev. E., 2007, no. 75, p. 036108.
  • Bulatov V., Argon A.A. A Stochastic Model for Continuum Elasto-Plastic Behavior. II. A Study of the Glass Transition and Structural Relaxation. Model. Simul. Mater. Sci. Eng., 1994, no. 2, p. 185.
  • Bulatov V., Argon A.A. A Stochastic Model for Continuum Elasto-Plastic Behavior: III. Plasticity in Ordered Versus Disordered Solids. Model. Simul. Mater. Sci. Eng., 1994, no. 2, p. 203.
  • Bulatov V., Argon A.A. A Stochastic Model for Continuum Elasto-Plastic Behavior. I. Numerical Approach and Strain Localization. Model. Simul. Mater. Sci. Eng., 1994, no. 2, p. 167.
  • Capaldi F.M., Boyce M C., Rutledge G.C. Molecular Response of a Glassy Polymer to Active Deformation. Polymer, 2004, no. 45, p. 1391.
  • Cheng Y.Q., Cao A.J., Sheng H.W., Ma E. Local Order Influences Initiation of Plastic Flow in Metallic Glass: Effects of Alloy Composition and Sample Cooling History. Acta Mater., 2008, no. 56, p. 5263.
  • Crist B. A Comprehensive Treatment. Cahn R., Haasen P., Kramer E.J., eds. Material Science Technology. VCH, Wein heim, 1995, vol. 12, p. 797.
  • Dasgupta R., George H., Hentschel E., Procaccia I. Yield Strain in Shear Banding Amorphous Solids. Phys. Rev., 2013, vol. E 87, p. 022810.
  • Falk M.L, Maloney C.E. Simulating the Mechanical Response of Amorphous Solids Using Atomistic Methods. Eur. Phys. J., 2010, vol. B 75, p. 405.
  • Falk M.L., Langer J.S. Dynamics of Viscoplastic Deformation in Amorphous Solids. Phys. Rev. E., 1998, no. 57, p. 7192.
  • Gendelman O.V., Manevich L.I. Structural Defects and Soft Localized Modes in Disordered Systems. JETP, 1996, vol. 83, no. 1, p. 155.
  • Hossain D., Tschopp M.A., Ward D.K., Bouvard J.L., Wang P., Horstemeyer M.F. Heterogeneous Dynamics During Deformation of a Polymer Glass. Polymer, 2010, no. 51, p. 6071.
  • Hoy R.S. Why is Understanding Glassy Polymer Mechanics So Difficult? J. Polym. Sci. B, 2011, no. 49, p. 979.
  • Hutnik M., Argon A.S., Suter U.W. Simulation of Elastic and Plastic Response in the Glassy Polycarbonate of 4,4'-Isopropylidenediphenol. Macromolecules, 1993, no. 26, p. 1097.
  • Kargin V.A. Selected Works. The Problems of Polymer Science. Moscow, Nauka Publ., 1986.
  • Lee S., Rutledge G.C. Plastic Deformation of Semicrystalline Polyethylene by Molecular Simulation. Macromolecules, 2011, no. 44, p. 3096.
  • Lemak A.S., Balabaev N.K. A Comparison Between Collisional Dynamics and Brownian Dynamics. Mol. Simul., 1995, no. 15, p. 223.
  • Luise R.R., Yannas I.V. Introduction to Molecular Dynamics Simulation. Biserano J., Dekker M., eds. Computation Modeling of Polymers. New York, 1992, pp. 1-28.
  • Lyulin A.V., Balabaev N.K., Mazo M.A., Michels M.A. Molecular Dynamics Simulation of Uniaxial Deformation of Glassy Amorphous Atactic Polystyrene. Macromolecules, 2004, no. 37, p. 8785.
  • Lyulin A.V., Vorselaars B., Mazo M.A., Balabaev N.K., Michels M.A. Strain Softening and Hardening of Amorphous Polymers: Atomistic Simulation of Bulk Mechanics and Local Dynamics. Europhys. Lett., 2005, no. 71, p. 618.
  • Mahajan D.K., Estevez R., Basu S. Ageing and Rejuvenation in Glassy Amorphous Polymers. J. Mech. Phys. Sol., 2010, no. 58, p. 1474.
  • Oleinik E.F., Rudnev S.N., Salamatina O.B., Kotelyanskiy M.I. Mechanisms of an Elastic Deformation in Solid Polymers: Solid-Like and Liquid-Like Processes. Polym. Sci., Ser. A, 2008, no. 50, p. 494.
  • Pacheco A.A., Batra R.C. Analysis of Structural Changes During Plastic Deformations of Amorphous Polyethylene. Polymer, 2013, no. 54, p. 819.
  • Paitner P., Coleman M., Koenig J. Vibrational Spectroscopy and Its Application to Polymeric Materials. Wiley, New York, 1982.
  • Pakhomov P.M., Korsukov V.E., Shablygin M.V., Novak I.I. Correlation Between Mechanical Properties and Conformation of the Polymer Composition. Polymer Science, Ser. A, 1984, no. 26, p. 1288.
  • Papakonstantopoulos G.J., Riggleman R.A., Barrat J.L., De Pablo J.J. Calculation of Local Mechanical Properties of Filled Polymers. Phys. Rev. E, 2008, no. 77, p. 041502.
  • Perez J. Physics and Mechanics of Amorphous Polymers. Balkema, Rotterdam, 1998.
  • Riggleman R.A., Lee H.N., Ediger M.D., De Pablo J.J. Heterogeneous Dynamics During Deformation of a Polymer Glass. Soft Matter., 2010, no. 6, p. 287.
  • Robertson R.E. Theory for the Plasticity of Glassy Polymers. J. Chem. Phys., 1966, no. 44, p. 3950.
  • Rodney D., Tangu A., Vandembroucq D. Modeling the Mechanics of Amorphous Solids at Different Length Scale and Time Scale. Model. Simul. Mater. Sci. Eng., 2011, no. 19, p. 083001.
  • Rottler J. Fracture in Glassy Polymers: a Molecular Modeling Perspective. J. Phys.: Condens. Matter, 2009, no. 21, p. 463101.
  • Shapochkin V.I., Semenova L.M., Bakhracheva Yu.S., Gyulikhandanov E.L., Semenov S.V. Effect of Nitrogen Content on the Structure and Properties of Nitrocarburized Steel. Metal Science and Heat Treatment, 2011, vol. 52, no. 9-10, pp. 413-419.
  • Shi Y., Falk M. Atomic Scale Simulations of strain Localization in Three-Dimensional Model of Amorphous Solids Phys. Rev. B: Condens. Matter., 2006, no. 73, p. 214201.
  • Siesler H., Rheo-Optical Fourier-Transform Infrared Spectroscopy: Vibrational Spectra and Mechanical Properties of Polymers. Adv. Polym. Sci., 1984, no. 65, p. 1.
  • Strelnikov I.A., Balabaev N.K., Mazo M.A.,Oleinik E.F. Analysis of Local Rearrangements in Chains During Simulation of the Plastic Deformation of Glassy PM. Polymer Science, Ser. A, 2014, vol. 56, no. 2, p. 219.
  • Theodorou D.N., Suter U.W. Local Structure and the Mechanism of Response to Elastic Deformation in a Glassy Polymer. Macromolecules, 1986, no. 19, p. 379.
  • Utz M., Atallah A.S., Robyr P., Widmann A.H., Ernst R.R., Suter U.W. Solid-State NMR Investigation of the Structural Consequences of Plastic Deformation in Polycarbonate. 1. Global Orientational Order. Macromolecules, 1999, no. 32, p. 6191.
  • Vorselaars B., Lyulin A.V., Michels M.A. Deforming Glassy Polystyrene: Influence of Pressure, Thermal History, and Deformation Mode on Yielding and Hardening. J. Chem. Phys., 2009, no. 130, p. 074905.
  • Weiner S.J., Kollman P.A., Case D.A., Singh U.C., Ghio C., Alagona G. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc., 1984, no. 106, p. 765.
Еще
Статья научная