Modification of concrete by hydrothermal nanosilica

Автор: Potapov V.V., Efimenko Y.V., Gorev D.S.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Research results of the leading scientists

Статья в выпуске: 3 Vol.11, 2019 года.

Бесплатный доступ

The paper shows the possibility to use hydrothermal nanosilica as a modifying additive to increase the strength of concrete based on portland cement. The technology of obtaining hydrothermal nanosilica in the form of sols and nanopowders by ultrafiltration membrane concentration and cryochemical vacuum sublimation is proposed. The results of increased strength of concrete under compression by the addition of hydrothermal nanosilica Sol are presented. The experiments were performed on highly mobile concretes (ST = 10–19 cm) on equal-moving mixtures with water-cement ratio W/C = 0.61–0.71 at a dose of SiO2 2 wt.% and the rate of superplasticizer polycarboxylate 0.95±0.05 mas.% by cement. At the initial stage of hardening when the age is 1 day, the increase in the compressive strength of concrete reached 90–128% compared to the control sample. At the age of 28 days the increase in strength was 40%. High chemisorption activity of hydrothermal nanopowder with respect to Ca(OH)2 was determined in the experiment with lime medium. This indicates that the amorphous nanoadditive SiO2, which has a high specific surface area, causes the formation of high-strength hydrates of calcium silicates in the cement (lime) medium as a result of the pozzolan reaction, and this causes an increase in the strength of concrete.


Hydrothermal solution, sol, nanopowder, silica, chemisorption capacity, pozzolan reaction, compressive strength of concrete

Короткий адрес:

IDR: 142227487   |   DOI: 10.15828/2075-8545-2019-11-3-248-265

Список литературы Modification of concrete by hydrothermal nanosilica

  • Lesovik V.S., Potapov V.V., Alfimova N.I. Povyshenie effektivnosti vyazhushchih za schet ispol’zovaniya nanomodifikatorov [Improving the efficiency of binders through the use of nanomodifiers]. Building materials. 2011. No. 6. P.12-18. (In Russian).
  • Potapov V.V., Tumanov A.V., Zakurazhnov M.S. et al. Povyshenie prochnosti betona za schet vvoda nanochastic SiO2 [Increase of concrete strength due to introduction of SiO2 nanoparti-cles]. Physics and chemistry of glass. 2013. Vol. 39. No. 4. P. 611–617. (In Russian).
  • Potapov V.V., Serdan A.A., Kashpur V.N. Poluchenie i svojstva nanokremnezema na osnove gidrotermal’nogo rastvora [Preparation and properties of nanosilicon based on hydrothermal solution]. Chemical technology. 2017. No. 2. P. 65–73. (In Russian).
  • Sobolev K., Ferrada Gutierrez M. How Nanotechnology Can Change the Concrete World. American Ceramic Society Bulletin. 2005;10:14-19.
  • Sobolev K. et al. Development of nano-SiO2 based admixtures for high-performance ce-ment-based materials. Progress report. CONACYT. Mexico. 2006. 340 P.
  • Sobolev K., Flores I., Hermesillo K., Torres-Martinez L.M. Nanomaterials and nanotech-nology for high-performance cement composites. Proceedings of ASI Session on «Nanotechnology Concrete: Recent Developments and Future Perspectives». November 7. 2006. Denver. USA. 296 P.
  • Sanchez F., Sobolev K. Nanotechnology in concrete – A review. Construction and Build-ing Materials. No. 24. 2010. P. 2060–2071.
  • Yang T., Keller B., Magyari E. AFM investigation of cement paste in humid air at different relative humidities. J. Phys. D.: Appl. Phys. 2002. P. 25–28.
  • Beaudoin J., Raki L., Alizadeh R. A 29Si MAS NMR study of modified C–S–H nanostruc-tures. Cem. Concr. Compos. 2009. V. 31(8). P. 585–90.
  • Jennings H.M. Refinements to colloid model of C–S–H in cement: CM-II. Cem. Concr. Res. 2008. V. 38(3), P. 275–289.
  • Bordallo H.N., Aldridge L.P., Desmedt A. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering. J. Phys. Chem. 2006. V. 110(17). P. 966–976.
  • Faucon P., Delaye J., Virlet J., Jacquinot J., Adenot F. Study of the structural properties of the C–S–H(I) by molecular dynamics simulation. Cem. Concr. Res. 1997. V. 27(10). P. 1581–1590.
  • Bjornstrom J., Martinelli A., Matic A., Borjesson L., Panas I. Accelerating effects of col-loidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem. Phys. Lett. 2004. V. 392(1–3). P. 242–248.
  • Li H., Zhang M-H., Ou J-P. Flexural fatigue performance of concrete containing nano-particles for pavement. Int. J. Fatig. 2007. V. 29(7). P. 1292–1301.
  • Abdoli N., Arefi R., Mollaahmadi E., Abdollahi B. To study the effect of adding Fe2O3 nanoparticles on the morphology properties and microstructure of cement mortar. Life Science Journal. 2011. V. 8(4). P. 550–554.
  • Li Z., Wang H., He S., Lu Y., Wang M. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. V. 2006. V. 60(3). P. 356–359.
  • Nazari A., Riahi H. The effects of ZrO2 nanoparticles on physical and mechanical proper-ties of high strength self compacting concrete. Materials Research. 2010. V.13. No. 4. P. 1–13.
  • Nazari A., Riahi H. Effects of CuO nanoparticles on compressive strength of self-compacting concrete. Sadhana. V. 36. Part 3. June 2011. P. 371–391.
  • Chang T.-P., Shih J.-Y., Yang K.-M., Hsiao T.-C. Material properties of Portland cement paste with nano-montmorillonite. J. Mater. Sci. 2007. V. 42(17). P. 7478–7487.
  • Kuo W.-Y., Huang J.-S., Lin C.-H. Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cem. Concr. Res. 2006. V. 36(5). P. 886–895.
  • Lee J., Kriven M. Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method. Mater. Struct. 2005. V. 8(1). P. 87–92.
  • Butt Y.M., Raskovic L.N. Tverdenie vyazhushchih pri povyshennyh temperaturah [The hardening of the binders at elevated temperatures]. Moscow. Publishing House of Construction Lit-erature. 1965. 222 p. (In Russian).
  • Lea F.M. Chemistry of cement and concrete. Moscow. Stroyizdat, 1961. 645 pp. (In Russian).
  • Efimenko Yu.V., Kuznetsova L.A., Antropova V.A. Osobennosti vliyaniya mikrokrem-nezema na strukturu melkozernistogo keramzitobetona lit’evoj konsistencii [Features of the influence of microsilica on the structure of fine-grained expanded clay casting consistency]. Science and technology of silicate materials – present and future: Proc. of Int. Conf. Moscow. CPS, 2003. P. 98–106. (In Russian).
Статья научная