Методы выделения и очистки ДНК из лизатов клеток (обзор)

Автор: Петров Д.Г., Макарова Е.Д., Гермаш Н.Н., Антифеев И.Е.

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Приборостроение физико-химической биологии

Статья в выпуске: 4 т.29, 2019 года.

Бесплатный доступ

В представленном обзоре рассмотрены методы выделения и очистки ДНК из лизатов клеток, классифицированные по основным принципам и конкретным средствам, использованным с этой целью. Изложены известные на сегодняшний день преимущества, особенности использования и возможные ограничения для ПЦР-анализа. Использованные материалы включают как обзорные публикации, так и ряд "старых" работ, которые до сих пор не потеряли своей актуальности и являются основой для разработки современных нестандартных методов выделения и очистки ДНК.

Нуклеиновые кислоты, выделение ДНК, очистка ДНК, двуокись кремния, магнитные частицы, спин-колонки, жидкофазные методы, nucleic acid, DNA isolation, DNA purification, silicon dioxide, spin column, magnetic particles, chelex, liquid phase methods

Еще

Короткий адрес: https://sciup.org/142221438

IDR: 142221438   |   DOI: 10.18358/np-29-4-i2850

Список литературы Методы выделения и очистки ДНК из лизатов клеток (обзор)

  • Hedman J., Knutsson R., Ansell R., et al. Pre-PCR processing in bioterrorism preparedness: improved diagnostic capabilities for laboratory response networks. Biosecur. Bioterror, 2013, vol. 11, suppl. 1, pp. S87–S101. DOI: 10.1089/bsp.2012.0090.
  • Kralik P., Ricchi M.A. Basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything // Front. Microbiol. 2017. Vol. 8: 108. DOI: 10.3389/fmicb.2017.00108
  • Бочкарев Е.Г., Денисова Т.С., Генерозов Э.В. и др. Генодиагностика во фтизиатрии. М.: 2000, 15 c.
  • Doebler R.W., Erwin B., Hickerson A., et al. Continuousflow, rapid lysis devices for biodefense nucleic acid diagnostic systems // JALA. 2009, June. P. 119–125. DOI: 10.1016/j.jala.2009.02.010
  • Martzy R., Kolm C., Krska R. et al. Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis // Anal. Bioanal. Chem. 2019. Vol. 411. P. 1695–1702. DOI: 10.1007/s00216-018-1553-1
  • Rantakokko-Jalava K., Jalava J. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR // J. Clin. Microbiol. 2002. Vol. 40, no. 11. P. 4211–4217. DOI: 10.1128/JCM.40.11.42114217.2002
  • Thatcher S.A. DNA/RNA Preparation for molecular detection // Clin. Chem. 2015. Vol. 61, no. 1. P. 89–99. DOI: 10.1373/clinchem.2014.221374
  • Islam M.S., Aryasomayajula A., Selvaganapathy P.R. A review on macroscale and microscale cell lysis methods // Micromachines. 2017. Vol. 8, is. 3: 83. DOI: 10.3390/mi8030083
  • Rudi K., Jakobsen K.S. Overview of DNA purification for nucleic acid-based diagnostics from environmental and clinical samples // Methods in Molecular Biology. 2006. Vol. 345. P. 23–35. DOI: 10.1385/1-59745-143-6:23
  • Burden D. Guide to the Disruption of Biological Samples // Random Primers. 2012. Vol. 25, no. 12. P. 1–25. URL: https://opsdiagnostics.com/applications/homogenization_g uide_download.htm
  • Gibbons L.E., Brangs H.C.G., Burden D.W. Bead Beating: A Primer (OPS Diagnostics, LLC) // Random Primers. 2014, no. 12. URL:https://opsdiagnostics.com/notes/ranpri/OPSD_Bead _Beating_Primer_2014%20v1.pdf
  • Elphinstone J., Griffiths B., Goddard M., Stockdale E. Soil biology and soil health health partnership. Project 3: Molecular approaches for routine soil-borne disease and soil health assessment – establishing the scope. Research Review. no. 91140002-03. BBRO, 2018. 37 p. URL: https://cereals.ahdb.org.uk/media/1362039/91140002final-report-03pdf.pdf
  • Bakken L.R., Frostegård A. Nucleic acid extraction from soil // Nucleic acids and proteins in soil. Eds. P. Nannipieri, K. Smalla. Springer-Verlag, Berlin, Heidelberg, 2006. P. 49–73.
  • Лопухов Л.В., Эйдельштейн М.В. Полимеразная цепная реакция в клинической микробиологической диагностике // Клиническая микробиология и антимикробная терапия. 2000. Т. 2, № 3. С. 96–106. URL: https://cmac-journal.ru/publication/2000/3/cmac-2000t02-n3-p096/cmac-2000-t02-n3-p096.pdf
  • Vaneechoutte M., Van Eldere J. The possibilities and limitations of nucleic acid amplification technology in diagnostic microbiology // J. Med. Microbiol. 1997. Vol. 46. P. 188–194. DOI: 10.1099/00222615-46-3-188
  • Hedman J., Rådström P. Overcoming inhibition in realtime diagnostic PCR // Meth. Mol. Biol. 2013. Vol. 943. P. 17–48. DOI: 10.1007/978-1-60327-353-4_2
  • Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors — occurrence, properties and removal // J. Appl. Microbiol. 2012. Vol. 113. P. 1014–1026. DOI: 10.1111/j.1365-2672.2012.05384.x
  • Wilson I.G. Inhibition and facilitation of nucleic acid amplification // Appl. Environ. Microbiology. 1997. Vol.63, no. 10. P. 3741–3751. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168683/
  • Rådström P., Knutsson R., Wolffs P., et al. Pre-PCR processing: Strategies to generate PCR-compatible samples // Mol. Biotechnol. 2004. Vol. 26. P. 133–146. DOI: 10.1385/MB:26:2:133
  • Bessetti J. An introduction to PCR inhibitors // Promega Corporation. Profiles in DNA. 2007. Vol. 10, is. 1. P. 9–10. URL: https://www.promega.es//media/files/resources/profiles-in-dna/1001/anintroduction-to-pcr-inhibitors.pdf?la=es-es
  • Matheson C.D., Gurney C., Esau N., Lehto R. Assessing PCR inhibition from humic substances // The open enzyme inhibition J. 2010. Vol. 3. P. 38–45. DOI: 10.2174/1874940201003010038
  • Demeke T., Jenkins G.R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on realtime PCR assay of biotechnology-derived traits // Anal. Bioanal. Chem. 2010. Vol. 396. P. 1977–1990. DOI: 10.1007/s00216-009-3150-9
  • Hu Q, Liu Y, Yi S, Huang D. The effect of six common PCR inhibitors on DNA polymerase and DNA template // Int. J. Forensic Sci. Pathol. 2014. Vol. 2, no. 8. P. 1–4. DOI: 10.19070/2332-287X-1400017
  • Sidstedt M., Jansson L., Nilsson E., et al. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction // Anal. Biochem. 2015. Vol. 487. P. 30–37. DOI: 10.1016/j.ab.2015.07.002
  • Sidstedt M., Hedman J., Romsos E.L., et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR // Anal. Bioanal. Chem. 2018. Vol. 410, is. 10. P. 2569–2583. DOI: 10.1007/s00216-018-0931-z
  • Moore D.D., Chory J., Ribaudo R.K. Isolation and purification of large DNA restriction fragments from agarose gels // Current Protocols in Immunology. 1993. Vol. 8, is. 1. P. 10.5.1–10.5.12. DOI: 10.1002/0471142735.im1005s08
  • Moore E., Arnscheidt A., Krüger A., et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures // Molecular Microbial Ecology Manual, 2nd Ed. 1.01: 2004. P. 3–18.
  • Tan S.C., Yiap B.C. DNA, RNA, and protein extraction: The past and the present // J. Biomed. Biotechnol. 2009. Vol. 2009. 574398. DOI: 10.1155/2009/574398
  • Антонова О.С., Корнева Н.А., Белов Ю.В., Курочкин В.Е. Эффективные методы выделения нуклеиновых кислот для проведения анализов в молекулярной биологии (Обзор) // Научное приборостроение. 2010. Т. 20, № 1. С. 3–9. URL: http://iairas.ru/mag/2010/full/Art1.pdf
  • Palomo F.S., Celle Rivero M.G., Quiles M.G., et al. Comparison of DNA extraction protocols and molecular targets to diagnose tuberculous meningitis // Tuberculosis Res. Treat. 2017. Vol. 2017. 5089046. DOI: 10.1155/2017/5089046
  • Purdy K.J. Nucleic acid recovery from complex environmental samples // Method Enzymol. 2005. Vol. 397. P. 271–292. URL: https://doi.org/10.1016/S00766879(05)97016-X
  • Ali N., de Cássia Pontello Rampazzo R., Costa A.D.T., Krieger M.A. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics // BioMed Research Int. 2017. Vol. 2017. 9306564. DOI: 10.1155/2017/9306564
  • Chacon-Cortes D., Griffiths L. Methods for extracting genomic DNA from whole blood samples: current perspectives // J. Biorepository Science for Applied Medicine. 2014. Vol. 2. P. 1–9. DOI: 10.2147/BSAM.S46573
  • Barbosa C., Nogueira S., Gadanho M., Chaves S. DNA extraction: finding the most suitable method // Molecular Microbial Diagnostic Methods: Pathways to Implementation for the Food and Water Industries. Chapter 7. Elsevier Inc., 2016. P. 135–154.
  • Zaveri P., Patel R., Patel M. Patel M., Sarodia D., Munshi N.S. Modification of extraction method for community DNA isolation from salt affected compact wasterland soil samples // MethodsX. 2017. Vol. 4. P. 63–67. DOI: 10.1016/j.mex.2017.01.002
  • Lee S.B., Shewale J.G. DNA Extraction methods in forensic analysis // Encyclopedia of Analytical Chemistry. John Wiley & Sons, 2017. P. 1–18. DOI: 10.1002/9780470027318.a1104m
  • Cheng H.-R., Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts // Biotechnol. Lett. 2006. Vol. 28, no. 1. P. 55–59. DOI: 10.1007/s10529-005-4688-z
  • Zhang R., Gong H.-Q., Zeng X. et al. A Microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay // Anal. Chem. 2013. Vol. 85, no. 3. P. 1484–1491. DOI: 10.1021/ac3026509
  • Chomczynski P., Mackey K., Drews R., Wilfinger W. DNAzol: A reagent for the rapid isolation of Genomic DNA // BioTechniques. 1997. Vol. 22, no. 3. P. 550–553. DOI: 10.2144/97223pf01
  • Rodriguez-Garcia A., Mares R.E., Muñoz P.L.A., et al. DNA extraction with DNAzol and LAMP, performed in a
  • heating block as a simple procedure for detection of Mycobacterium tuberculosis in sputum specimens // Methods and Protoc. 2018. Vol. 1, is. 4. 37. DOI: 10.3390/mps1040037
  • Ligozzi M., Fontana R. Isolation of total DNA from bacteria and yeast // Afr. J. Biotechnol. 2003. Vol. 2, no. 8. P. 251–253. DOI: 10.5897/AJB2003.000-1052
  • Kissoudi M., Samanidou V. Recent Advances in applications of ionic liquids in miniaturized microextraction techniques // Molecules. 2018. Vol. 23, is. 6. 1437. DOI: 10.3390/molecules23061437
  • Fuchs-Telka S., Fister S., Mester P-J., et al. Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification // Anal. Bioanal. Chem. 2017. Vol. 409, no. 6. P. 1503–1511. DOI: 10.1007/s00216-016-0112-x
  • Ведерников В.Е. Сравнительная характеристика способов экстракции нуклеиновых кислот // Лаборатория. 2012. № 4. С. 14–15. URL: http://www.alkorbio.ru/download.php?d=84&is=doc
  • Аукенов Н.Е., Масабаева М.Р., Хасанова У.У. Выделение и очистка нуклеиновых кислот. Состояние проблемы на современном этапе // Наука и здравоохранение. 2014. № 1. С. 51–53.
  • Madhad V.J., Sentheil K.P. The rapid & non-enzymatic isolation of DNA from the human peripheral whole blood suitable for genotyping // Eur. J. Biotechnol. Biosci. 2014. Vol. 1, is. 3. P. 1–16. URL: http://www.biosciencejournals.com/vol1/issue3/26.html
  • Sakyi S.A., Kumi B., Ephraim R.D., et al. Modified DNA extraction technique for use in resource-limiting settingth: Comparison of salting out methods versus QIAamp blood mini kit // Ann. Med. Health Sci. Res. 2017. Vol. 7, is. 3. P. 131–136. URL: https://www.amhsr.org/articles/modified-dnaextraction-technique-for-use-in-resourcelimited-settingscomparison-of-salting-out-methods-versus-qiaamp-bl.pdf
  • Al-Shuhaib M.B.S. A minimum requirements method to isolate large quantities of highly purified DNA from one drop of poultry blood // J. Genetics. 2018. Vol. 97. P. 87–94. DOI: 10.1007/s12041-018-0983-z
  • Wells D.A., Herron L.L. Automation of sample preparation for genomics // LC·GC Europe. 2002. Vol. 15, no. 11. P. 712–720.
  • Boom R., Sol C.J., Salimans M.M., et al. Rapid and simple method for purification of nucleic acids // J. Clin. Microbiol. 1990. Vol. 28, no. 3. P. 495–503. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC269651/p df/jcm00051-0103.pdf
  • Zähringer H. Don’t lose the thread. Product survey: Manual DNA extraction kits // Lab Times. 2012. no. 6. P. 52–56.
  • Li J.-F., Li L., Sheen J. Protocol: a rapid and economical procedure for purification of plasmid or plant LNA with diverse applications in plant biology // Plant Methods. 2010. Vol. 6, is. 1. DOI: 10.1186/1746-4811-6-1
  • Huanca-Mamani W., Rivera-Cabello D., Maita-Maita J. A simple, fast and inexpensive CTAB-PVP-silica based method for genomic DNA isolation from single, small insect larvae and pupae // Genetics and Molecular Res. 2015. Vol. 14, no. 3. P. 8001–8007. DOI: 10.4238/2015.July.17.8
  • Rohland N., Hofreiter M. Comparison and optimization of ancient DNA extraction // BioTechniques. 2007. Vol. 42. P. 343–352. DOI: 10.2144/000112383
  • Devi S.G., Fathima A.A., Radha S. et al. A rapid and economical method for efficient DNA extraction from divers soils suitable for metagenomic applications // PLoS ONE. 2015. Vol. 10, no. 7. e0132441. DOI: 10.1371/journal.pone.0132441
  • Wang X., Xing L., Shu Y., et al. Novel polymeric ionic liquid microspheres with high exchange capacity for fast extraction of plasmid DNA // Anal. Chim. Acta. 2014. Vol. 837. P. 64–69. DOI: 10.1016/j.aca.2014.06.002
  • Shakhmaeva I.I., Bulatov E.R., Bondar O.V., et al. Binding and purification of plasmid DNA using multilayered carbon nanotubes // J. Biotechnol. 2011. Vol. 152, no. 3. P. 102–107. DOI: 10.1016/j.jbiotec.2011.01.022
  • Topҫu A.A., Aȿir S., Türkmen D. DNA purification by solid phase extraction (SPE) methods // Hacettepe J. Biol. & Chem. 2016. Vol. 44, is. 3. P. 259–266. URL: http://www.hjbc.hacettepe.edu.tr/site/assets/files/4121/08259-266.pdf
  • Nacham O., Clark K.D., Anderson J.L. Extraction and purification of DNA from complex biological sample matrices using solid-phase microextraction coupled with real-time PCR // Anal. Chem. 2016. Vol. 88. P. 7813– 7820. URL: https://pdfs.semanticscholar.org/093b/da2eddf068f83212b 7517dcabe796d8c25f9.pdf
  • Holmberg R.C., Gindlesperger A., Stokes T., et al. Akonni TruTip® and Qiagen® methods for extraction of fetal circulating DNA — evaluation by real-time and digital PCR // PLoS One. 2013. Vol. 8, no. 8. e73068. DOI: 10.1371/journal.pone.0073068
  • Frickmann H., Hinz R., Hagen R.M. Comparison of an automated nucleic acid extraction system with the columnbased procedure // Eur. J. Microbiol. Immunol. 2015. Vol. 5, no. 1. P. 94-102. DOI: 10.1556/EUJMI-D-1400040
  • Mandal G., Das S., Padmanabhan S. Development of a membrane-based method for isolation of genomic DNA from human blood // J. Biomol. Techniques. 2018. Vol. 29, is. 3. P. 46–53. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865945/
  • Beall S.G., Cantera J., Diaz M.H., et al. Performance and workflow assessment of six nucleic acid extraction technologies for use in resource limited settings // PLoS ONE. 2019. Vol. 14, no. 4. e0215753. DOI: 10.1371/journal.pone.0215753
  • Thakore N., Garber S., Bueno A., et al. A bench-top automated workstation for nucleic acid isolation from clinical sample types // J. Microbiol. Methods. 2018. Vol. 148. P. 174–180. DOI: 10.1016/j.mimet.2018.03.021
  • Holmberg R.C., Gindlesperger A., Stokes T., et al. Highthroughput, automated extraction of DNA and RNA from clinical samples using TruTip technology on common liquid handling robots // J. Vis. Exp. 2013. Vol. 76. e50356. DOI: 10.3791/50356
  • Bag S., Saha B., Mehta O., et al. An improved method for high quality metagenomics DNA extraction from human and environmental samples // Sci. Rep. 2016. Vol. 6. 26775. DOI: 10.1038/srep26775
  • Zhou Y., Zhang Y., He W., et al. Rapid regeneration and reuse of silica columns from PCR purification and gel extraction kits // Sci. Rep. 2018. Vol. 8. 12870. DOI: 10.1038/s41598-018-30316-w
  • Shi R., Lewis R.S., Panthee D.R. Filter paper-based spin column method for cost-efficient DNA or RNA purification // PLoS ONE. 2018. Vol. 13, no 12. e0203011. DOI: 10.1371/journal.pone.0203011
  • Shipley M.A., Koehler J.W., Kulesh D.A., Minogue T.D. Comparison of nucleic acid extraction platforms for detection of select biothreat agents for use in clinical resource limited settings // J Microbiol. Methods. 2012. Vol. 91, no. 1. P. 179–183. DOI: 10.1016/j.mimet.2012.06.008
  • UNITAID. Tuberculosis. Diagnostics technology landscape. 5th edition. Geneva, 2017. 90 p. URL: http://unitaid.org/assets/2017-Unitaid-TB-DiagnosticsTechnology-Landscape.pdf
  • Thakore N., Norville R., Franke M., et al. Automated TruTip nucleic acid extraction and purification from raw sputum // PLoS ONE. 2018. Vol. 13, no. 7. e0199869. DOI: 10.1371/journal.pone.0199869
  • Akonni Biosistems. Inc.TruTip® Automated Workstation. URL: https://akonni.com/technology/sample-prep/
  • Poh J.-J., Gan K.-E. The determination of factors involved in column-based nucleic acid extraction and purification // J. Bioproces. Biotechniq. 2014. Vol. 4, no. 3. 1000157. DOI: 10.4172/2155-9821.1000157
  • Katevatis C., Fan A., Klapperich C.M. Low concentration DNA extraction and recovery using a silica solid phase // PLOS One. 2017. Vol. 12, no. 5. e0176848. DOI: 10.1371/journal.pone.0176848
  • Петров Д.Г., Макарова Е.Д., Корнева Н.А., Альдекеева А.С., Князьков Н.Н. Воздействие полей разной природы на выход ДНК при выделении из модельных растворов на двуокиси кремния. 1. Влияние температуры // Научное приборостроение 2015. Т. 25, № 2. С. 91–101. URL: http://iairas.ru/mag/2015/full2/Art9.pdf
  • Петров Д.Г., Макарова Е.Д., Антифеев Н.Е. и др. Воздействие полей разной природы на выход ДНК при выделении из модельных растворов на двуокиси кремния. Влияние ультразвука // Научное приборостроение 2017. Т. 27, № 4. С. 40–55. URL: http://iairas.ru/mag/2017/full4/Art6.pdf
  • Kathiravan M.N., Gim G.H., Ryu J., et al. Enhanced method for microbial community DNA extraction and purification from agricultural yellow loess soil // J. Microbiol. 2015. Vol. 53, no. 11. P. 767–775. DOI: 10.1007/s12275015-5454-0
  • Tan S.C., Ong C.E., Hay Y.K., Yiap B.C. Cellulose and its application in biomolecules purification // Intl. Res. J. Appl. Basic Sci. 2013. Vol. 7, no. 5. P. 267–276.
  • Zou Y., Mason M.G., Wang Y. et al. Nucleic acid purification from plants, animals and microbes in under 30 seconds // PLoS Biology. 2017. Vol. 15, no. 11. e2003916. DOI: 10.1371/journal.pbio.2003916
  • Bangs Laboratories, Inc. Magnetic microspheres. TechNote 102. URL: https://www.bangslabs.com/sites/default/files/imce/docs/T echNote%20102%20Web.pdf
  • Rudi K., Kroken M., Dahlberg O.J., et al. Rapid, universal method to isolate PCR-ready DNA using magnetic beads // Bio Techniques. 1997. Vol. 22, no. 3. P. 506–511. DOI: 10.2144/97223rr01
  • Deggerdal A., Larsen F. Rapid isolation of PCR-ready DNA from blood, bone marrow and cultured cells, based on paramagnetic beads // BioTechniques. 1997. Vol. 22, no. 3. P. 554–557. DOI: 10.2144/97223pf02
  • Stemmer C., Beau-Faller M., Pencreach E., et al. Use of magnetic beads for plasma cell-free DNA extraction: Toward automation of plasma DNA analysis for molecular diagnostics // Clin. Chem. 2003. Vol. 49, no 11. P. 1953– 1955.
  • Romeika J.M., Yan F. Recent Advances in Forensic DNA Analysis // J. Forensic Res. 2013. S12. 001. 13 p. DOI: 10.4172/2157-7145.S12-001
  • Gong R., Li S. Extraction of human genomic DNA from whole blood using a magnetic microsphere method // Int. J. Nanomed. 2014. Vol. 9. P. 3781–3789. DOI: 10.2147/IJN.S59545
  • Haddad Y., Xhaxhiu K., Kopel P., et al. The isolation of DNA by polycharged magnetic particles: an analysis of the interaction by Zeta potential and particle size // Int. J. Mol. Sci. 2016. Vol. 17, is. 4. P. 550–561. DOI: 10.3390/ijms17040550
  • Saiyed Z.M., Ramchand C.N., Telang S.D. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support // J. Phys. Condens. Matter. 2008. Vol. 20, no. 20. 204153. DOI: 10.1088/0953-8984/20/20/204153
  • Niemirowicz K., Wilczewska A.Z., Car G. Magnetic nanoparticles as separators of nucleic acids // Chemik. 2013. Vol. 67, no. 10. P. 836–841.
  • Yi L., Huang Y., Wu T., Wu J. A magnetic nanoparticlesbased method for DNA extraction from the saliva of stroke patients // Neural Regeneration Research. 2013. Vol. 8, no. 32. P. 3036–3046. DOI: 10.3969/j.issn.16735374.2013.32.007
  • Sirdah M.M. Superparamagnetic–bead based method: An effective DNA extraction from dried blood spots (DBS) for diagnostic PCR // J. Clin. Diagn. Res. 2014. Vol. 8, no. 4. P. FC01–FC04. DOI: 10.7860/JCDR/2014/8171.4226
  • Sawant D.V., Bohara R.A., Patil R.S., Pawar S.H. Detection of Mycobacterium tuberculosis from pulmonary sputum sample using SPION mediated DNA extraction method // Res. J. Life Sci., Bioinformatics, Pharm. Chem. Sci. (RJLBPCS). 2018. Vol. 4, no. 1. P. 91–105. DOI: 10.26479/2018.0401.08
  • Chiang C.L., Sung C.S., Wu T.F., et al. Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2005. Vol. 822, no. 1-2. P. 54–60. DOI: 10.1016/j.jchromb.2005.05.017
  • Danthanarayana A.N., Manatunga D.C., de Silva R.M., et al. Magnetofection and isolation of DNA using polyethylenimine functionalized magnetic iron oxide nanoparticles // R. Soc. Open. Sci. 2018. Vol. 5, is. 12. 181369. DOI: 10.1098/rsos.181369
  • Volkova N.N., Derjabin O.N., Yanishpolskii V.V., Dudchenko N.O. Isolation of ultrapure plasmid DNA from bacterial cells with silica-magnetite nanoparticles // Annales. Universitatis Mariae Curie-Skłodowska. Lublin – Polonia. Sectio AA. 2007. Vol. LXII, no. 22. P. 250–260. URL: http://dlibra.umcs.lublin.pl/Content/24167/czas4051_62_2 007_22.pdf
  • Quy D.V., Hieu N.M., Tra P.T., et al. Synthesis of silicacoated magnetic nanoparticles and application in the detection of pathogenic viruses // J. Nanomaterials. 2013. Vol. 2013. 603940. (6 p.) DOI: 10.1155/2013/603940
  • Liu Q., Li J., Liu H., et al. Rapid, cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetite nanoparticles // Nano Research. 2014. Vol. 7, no. 5. P. 755–784. DOI: 10.1007/s12274-014-0436-9
  • Oberacker P., Stepper P., Bond D.M., et al. Bio-onmagnetic-beads (BOMB): Open platform for highthroughput nucleic acid extraction and manipulation // PLoS Biol. 2019. Vol. 17, no. 1. e3000107. DOI: 10.1371/journal.pbio.3000107
  • Sur K., McFall S.M., Yeh E.T., al. Immiscible phase nucleic acid purification eliminates PCR inhibitors with a single pass of paramagnetic particles through a hydrophobic liquid // J. Mol. Diagnostics. 2010. Vol. 12, no. 5. P. 620–628. DOI: 10.2353/jmoldx.2010.090190
  • Berry S.M., Alarid E.T., Beebe D.J. One-step purification of nucleic acid for gene expression analysis via immiscible filtration assisted by surface tension (IFAST) // Lab. Chip. 2011. Vol. 11, no. 10. P. 1747–1753. DOI: 10.1039/c1lc00004g
  • Bordelon H., Russ P.K., Wright D.W., Haselton F.R. A magnetic bead-based method for concentrating DNA from human urine for downstream detection // PLOS ONE. 2013. Vol. 8, no. 7. e68369. DOI: 10.1371/journal.pone.0068369
  • Scherr T.F., Ryskoski H.B., Doyle A.B., Haselton F.R. A two-magnet strategy for improved mixing and capture from biofluids // Biomicrofluidics. 2016. Vol. 10. P. 024118-1–024118-15. DOI: 10.1063/1.4946014
  • Dzhenloda R.Kh, Petrov D.G., Shkinev V.M., Spivakov B.Yu. DNA recovery from environmental samples on suspension columns under a combined action of ultrasound and magnetic fields followed by polymerase chain reaction detection // Mendeleev Commun. 2017. Vol. 27, is. 3. P. 302–303. DOI: 10.1016/j.mencom.2017.05.029
  • Кулмамабетова Г. Пробоподготовка. Методы выделения ДНК/РНК. Астана: ЕНУ, 2012. URL: https://studylib.ru/doc/2335021/probopodgotovka.metody-vydeleniya-dnk-rnk.
  • Chircov C., Grumezescu A.M., Holban A.M. Magnetic particles for advanced molecular diagnosis // Materials. 2019. Vol. 12. 2158. 17 p. DOI: 10.3390/ma12132158
  • Walsh P.S., Metzger D.A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material // BioTechniques. 1991. Vol. 10, no. 4. P. 506–513.
  • Sepp R., Szabó I., Uda H., Sakamoto H. Rapid techniques for DNA extraction from routinely processed archival tissue for use in PCR // J. Clin. Pathol. 1994. Vol. 47, is. 4. P. 318-323. DOI: 10.1136/jcp.47.4.318
  • Polski J.M., Kimzey S., Percival R.W., Grosso L.E. Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100 // Mol. Pathol. 1998. Vol. 51, is. 4. P. 215–217. DOI: 10.1136/mp.51.4.215
  • Phillips K., McCallum N., Welch L. A comparison of methods for forensic DNA extraction: Chelex® 100 and the QIAGEN DNA Investigator Kit (manual and automated) // Forensic Sci. Int. Genet. 2012. Vol. 6, no 2. P. 282–285. DOI: 10.1016/j.fsigen.2011.04.018 109. Idris B., Goodwin W. Comparison of Chelex®–100 with two solid phase DNA extraction techniques // Forens. Sci. Int. Gen. Suppl. Ser. 2015. Vol. 5. P. e274–e275. DOI: 10.1016/j.fsigss.2015.09.109
  • Ip S.C., Lin S.W., Lai K.M. An evaluation of the performance of five extraction methods: Chelex® 100, QIAamp® DNA Blood Mini Kit, QIAamp® DNA Investigator Kit, QIAsymphony® DNA Investigator® Kit and DNA IQ™ // Sci. Justice. 2015. Vol. 55, no. 3. P. 200– 208. DOI: 10.1016/j.scijus.2015.01.005
  • Aygan A. Nucleic Acid extraction from clinical specimens for PCR applications // Turk. J. Biol. 2006. Vol. 30, is. 2. P. 107–120.
  • Fukui Y., Sawabe T. Rapid detection of Vibrio harveyiin seawater by real-time PCR // Microbes Environ. 2008. Vol. 23, no. 2. P. 172–176. DOI: 10.1264/jsme2.23.173
  • Musapa M., Kumwenda T., Mkulama M., et al. A simple Chelex protocol for DNA extraction from Anopheles spp // J. Vis. Exp. 2013. Vol. 71. e3281. DOI: 10.3791/3281
  • Al-Griw H.H., Zraba Z.A., Al-Muntaser S.K., et al. Effects of storage temperature on the quantity and integrity of genomic DNA extracted from mice tissues: A comparison of recovery methods // Open Veterinary J. 2017. Vol. 7, no. 3. P. 239–243. DOI: 10.4314/ovj.v7i3.7
  • Ruiz- Fuentes J.L., Diaz A., Entenza A.E., et al. Comparison of four DNA extraction methods for the detection of Mycobacterium leprae from Ziehl-Neelsen-stained microscopic slides // Int. J. Mycobacteriology. 2015. Vol. 4, is. 4. P. 284–289. DOI: 10.1016/j.ijmyco.2015.06.005
  • Kolia-Diafouka P., Godreuil S., Bourdin A., et al. Optimized lysis-extraction method combined with IS6110amplification for detection of Mycobacterium tuberculosis in paucibacillary sputum specimens // Front. Microbiol. 2018. Vol. 9. 2224. DOI: 10.3389/fmicb.2018.02224
  • Leung E.T., Zheng L., Wong R.Y., et al. Rapid and simultaneous detection of Mycobacterium tuberculosis complex and Beijing/W genotype in sputum by an optimized DNA extraction protocol and a novel multiplex real-time PCR // J. Clin. Microbiol. 2011. Vol. 49, no. 7. P. 2509–2515. DOI: 10.1128/JCM.00108-11
  • Reyes-Escogido L., Balam-Chi M., Rodriguez-Buenfil I., et al. Purification of bacterial genomic DNA in less than 20 min using chelex-100 microwave: examples from strains of lactic acid bacteria isolated from soil samples // Antonie van Leeuwenhoek. 2010. Vol. 98, no. 4. P. 465– 474. DOI: 10.1007/s10482-010-9462-0
  • Martin-Platero A.M., Peralta-Sánchez J.M., Soler J.J., Martinez-Bueno M. Chelex-based DNA isolation procedure for the identification of microbial communities of eggshell surfaces // Anal. Biochem. 2010. Vol. 397, is. 2. P. 253–255. DOI: 10.1016/j.ab.2009.10.041
  • Singh U.A., Kumari M., Iyengar S. Method for improving the quality of genomic DNA obtained from minute quantities of tissue and blood samples using Chelex 100 resin // Biological Procedures Online. 2018. Vol. 20. 12. DOI: 10.1186/s12575-018-0077-6
  • Lienhard A., Schäffer S. Extracting the invisible: obtaining high quality DNA is a challenging task in small arthropods // Peer J. 2019. Vol. 7. e6753. DOI: 10.7717/peerj.6753
  • Kapustin D.V., Prostyakova A.I., Alexeev Ya.I., et al. High-throughput method of one-step DNA isolation for PCR diagnostics of Mycobacterium tuberculosis // Acta Naturae. 2014. Vol. 6, no. 2 (21). P. 48–52. URL: http://actanaturae.ru/catalog/225.aspx
Еще
Статья научная