Mechanical stimulation of distraction regenerate. Mini-review of current concepts

Автор: Cherkashin A.

Журнал: Гений ортопедии @geniy-ortopedii

Рубрика: Обзор литературы

Статья в выпуске: 6 т.29, 2023 года.

Бесплатный доступ

Introduction One of the key limitations of distraction osteogenesis (DO) is the absence or delayed formation of a callus in the distraction gap, which can ultimately prolong the duration of treatment.Purpose Multiple modalities of distraction regenerate (DR) stimulation are reviewed, with a focus on modulation of the mechanical environment required for DR formation and maturation.Methods Preparing the review, the scientific platforms such as PubMed, Scopus, ResearchGate, RSCI were used for information searching. Search words or word combinations were mechanical bone union stimulation; axial dynamization, distraction regenerate.Results Recent advances in mechanobiology prove the effectiveness of axial loading and mechanical stimulation during fracture healing. Further investigation is still required to develop the proper protocols and applications for invasive and non-invasive stimulation of the DR. Understanding the role of dynamization as a mechanical stimulation method is impossible without a consensus on the use of the terms and protocols involved.Discussion We propose to define Axial Dynamization as the ability to provide axial load at the bone regeneration site with minimal translation and bending strain. Axial Dynamization works and is most likely achieved through multiple mechanisms: direct stimulation of the tissues by axial cyclic strain and elimination of translation forces at the DR site by reducing the effects of the cantilever bending of the pins.Conclusion Axial Dynamization, along with other non-invasive methods of mechanical DR stimulation, should become a default component of limb-lengthening protocols.

Еще

Bone regeneration, mechanical stimulation, axial dynamization

Короткий адрес: https://sciup.org/142240037

IDR: 142240037   |   DOI: 10.18019/1028-4427-2023-29-6-656-661

Список литературы Mechanical stimulation of distraction regenerate. Mini-review of current concepts

  • Ilizarov GA. The principles of the Ilizarov method. Bull Hosp Jt Dis Orthop Inst. 1988;48(1):1-11.
  • Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res. 1990;(250):8-26.
  • Birch JG, Samchukov ML. Use of the Ilizarov method to correct lower limb deformities in children and adolescents. J Am Acad Orthop Surg. 2004;12(3):144-154. doi: 10.5435/00124635-200405000-00002
  • Sheridan GA, Fragomen AT, Rozbruch SR. Integrated Limb Lengthening Is Superior to Classical Limb Lengthening: A Systematic Review and Meta-analysis of the Literature. J Am Acad Orthop Surg Glob Res Rev. 2020;4(6):e20.00054. doi: 10.5435/JAAOSGlobal-D-20-00054
  • Cherkashin AM, Samchukov ML, Birch JG, Da Cunha AL. Evaluation of complications of treatment of severe Blount's disease by circular external fixation using a novel classification scheme. J Pediatr Orthop B. 2015;24(2):123-130. doi: 10.1097/BPB.0000000000000138
  • Black SR, Kwon MS, Cherkashin AM, et al.. Lengthening in Congenital Femoral Deficiency: A Comparison of Circular External Fixation and a Motorized Intramedullary Nail. J Bone Joint Surg Am. 2015;97(17):1432-1440. doi: 10.2106/JBJS.N.00932
  • Blum AL, BongioVanni JC, Morgan SJ, et al. Complications associated with distraction osteogenesis for infected nonunion of the femoral shaft in the presence of a bone defect: a retrospective series. J Bone Joint Surg Br. 2010;92(4):565-570. doi: 10.1302/0301-620X.92B4.23475
  • Biz C, Crimi A, Fantoni I, et al. Functional outcome and complications after treatment of comminuted tibial fractures or deformities using Ilizarov bone transport: a single-center study at 15- to 30-year follow-up. Arch Orthop Trauma Surg. 2021;141(11):1825-1833. doi: 10.1007/s00402-020-03562-9
  • Saleh M., Scott BW. The Complications of Leg Lengthening. In: De Bastiani, G., Apley, A.G., Goldberg, A. (eds) Orthofix External Fixation in Trauma and Orthopaedics. Springer, London; 2000:496-510. doi: 10.1007/978-1-4471-0691-3_47
  • Li R, Saleh M, Yang L, Coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339-347. doi: 10.1002/jor.20026
  • Sabharwal S. Enhancement of bone formation during distraction osteogenesis: pediatric applications. J Am Acad Orthop Surg. 2011;19(2):101-111. doi: 10.5435/00124635-201102000-00005
  • Sangkaew C. Distraction osteogenesis for the treatment of post traumatic complications using a conventional external fixator. A novel technique. Injury. 2005;36(1):185-193. doi: 10.1016/j.injury.2004.04.012
  • Borzunov DY, Kolchin SN, Malkova TA. Role of the Ilizarov non-free bone plasty in the management of long bone defects and nonunion: Problems solved and unsolved. World J Orthop. 2020;11(6):304-318. doi: 10.5312/wjo.v11.i6.304
  • Hvid I, Horn I, Huhnstock S, Steen H. The biology of bone lengthening. J Child Orthop. 2016;10(6):487-492. doi: 10.1007/s11832-016-0780-2
  • Akijay H, Kuru K, Tatar B, §im§ek F. Vitamin E Promotes Bone Formation in a Distraction Osteogenesis Model. J Craniofac Surg. 2019;30(8):2315-2318. doi: 10.1097/SCS.0000000000005685
  • Kurklu M, Yildiz C, Kose O, et al. Effect of alpha-tocopherol on bone formation during distraction osteogenesis: a rabbit model. J Orthop Traumatol. 2011;12(3):153-8. doi: 10.1007/s10195-011-0145-z
  • Sax OC, Nequesha M, Rivera JC, et al. Prevalence of Vitamin D Deficiency in Adult Limb Lengthening and Deformity Correction Patients. J Limb Lengthen Reconstr. 2021;7(2):110-113. doi: 10.4103/jllr.jllr_4_21
  • Gebauer D, Correll J. Pulsed low-intensity ultrasound: a new salvage procedure for delayed unions and nonunions after leg lengthening in children. J Pediatr Orthop. 2005;25(6):750-754. doi: 10.1097/01.bpo.0000173245.12184.7e
  • Song MH, Kim TJ, Kang SH, Song HR. Low-intensity pulsed ultrasound enhances callus consolidation in distraction osteogenesis of the tibia by the technique of lengthening over the nail procedure. BMC Musculoskelet Disord. 2019;20(1):108. doi: 10.1186/s12891-019-2490-7
  • Harrison A, Alt V. Low-intensity pulsed ultrasound (LIPUS) for stimulation of bone healing - A narrative review. Injury. 2021;52 Suppl 2:S91-S96. doi: 10.1016-1.injury.2021.05.002
  • Jauregui JJ, Ventimiglia AV, Grieco PW, et al. Regenerate bone stimulation following limb lengthening: a meta-analysis. BMC Musculoskelet Disord. 2016;17(1):407. doi: 10.1186/s12891-016-1259-5
  • Lee DH, Ryu KJ, Kim JW, et al. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789-9377. doi: 10.1007/s11999-014-3548-3
  • Karakayali M, Alpay Y, Sarisözen B. Effect of platelet-rich plasma on bone regenerate consolidation in distraction osteogenesis: An experimental study in rabbits. Acta Orthop Traumatol Turc. 2022;56(1):8-13. doi: 10.5152/j.aott.2022.20443
  • Li Y, Pan Q, Xu J, et al. Overview of methods for enhancing bone regeneration in distraction osteogenesis: Potential roles of biometals. J Orthop Translat. 2021;27:110-118. doi: 10.1016/j.jot.2020.11.008
  • Glenske K, Donkiewicz P, Köwitsch A, et al. Applications of Metals for Bone Regeneration. Int J Mol Sci. 2018;19(3):826. doi: 10.3390/ijms19030826
  • Eralp L, Ozkan K, Kocaoglu M, et al. Effects of hyperbaric oxygen therapy on distraction osteogenesis. Adv Ther. 2007;24(2):326-32. doi: 10.1007/ BF02849901
  • Wang IC, Wen-Neng Ueng S, Yuan LJ, et al. Early administration of hyperbaric oxygen therapy in distraction osteogenesis--a quantitative study in New Zealand rabbits. J Trauma. 2005;58(6):1230-1235. doi: 10.1097/01.ta.0000169872.38849.b0
  • Sailhan F, Gleyzolle B, Parot R, et al. Rh-BMP-2 in distraction osteogenesis: dose effect and premature consolidation. Injury. 2010;41(7):680-6. doi: 10.10161.injury.2009.10.010
  • Mizumoto Y, Moseley T, Drews M, et al. Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am. 2003;85-A Suppl 3:124-30. doi: 10.2106/00004623-200300003-00019
  • Wei H, Zili L, Yuanlu C, et al. Effect of icariin on bone formation during distraction osteogenesis in the rabbit mandible. Int J Oral Maxillofac Surg. 2011;40(4):413-8. doi: 10.10161.ijom.2010.10.015
  • Bereket C, Özan F, §ener 1, et al. Propolis accelerates the consolidation phase in distraction osteogenesis. J Craniofac Surg. 2014;25(5):1912-1916. doi: 10.1097/SCS.0000000000000946
  • Taylor KF, Inoue N, Rafiee B, et al. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res. 2006;24(1):2-10. doi: 10.1002/jor.20014
  • Yong Y, Ming ZD, Feng L, et al. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med. 2016;10(10):E537-E545. doi: 10.1002/term.1864
  • Makhdom AM, Hamdy RC. The role of growth factors on acceleration of bone regeneration during distraction osteogenesis. Tissue Eng Part B Rev. 2013;19(5):442-53. doi: 10.1089/ten.TEB.2012.0717
  • Raschke MJ, Bail H, Windhagen HJ, et al. Recombinant growth hormone accelerates bone regenerate consolidation in distraction osteogenesis. Bone. 1999;24(2):81-88. doi: 10.1016/s8756-3282(98)00158-6
  • Kiely P, Ward K, Bellemore C M, et al. Bisphosphonate rescue in distraction osteogenesis: a case series. J Pediatr Orthop. 2007;27(4):467-71. doi: 10.1097/01.bpb.0000271326.41363.d1
  • Saghieh S, Khoury NJ, Tawil A, et al. The impact of zoledronic acid on regenerate and native bone after consolidation and removal of the external fixator: an animal model study. Bone. 2010;46(2):363-8. doi: 10.1016-j.bone.2009.10.010
  • Alp YE, Taskaldiran A, Onder ME, et al. Effects of Local Low-Dose Alendronate Injections Into the Distraction Gap on New Bone Formation and Distraction Rate on Distraction Osteogenesis. J Craniofac Surg. 2017;28(8):2174-2178. doi: 10.1097/SCS.0000000000002615
  • Hübler R, Blando E, Gaiäo L, et al. Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci. 2010;25(2):213-9. doi: 10.1007/s10103-009-0691-2
  • Gurler G, Gursoy B. Investigation of effects of low level laser therapy in distraction osteogenesis. J Stomatol Oral Maxillofac Surg. 2018;119(6):469-476. doi: 10.1016/j.jormas.2018.05.006
  • Xu J, Wang B, Sun Y, et al. Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther. 2016;7(1):134. doi: 10.1186/s13287-016-0392-2
  • Yang Y, Pan Q, Zou K, et al. Administration of allogeneic mesenchymal stem cells in lengthening phase accelerates early bone consolidation in rat distraction osteogenesis model. Stem Cell Res Ther. 2020;11(1):129. doi: 10.1186/s13287-020-01635-5
  • Kitoh H, Kawasumi M, Kaneko H, Ishiguro N. Differential effects of culture-expanded bone marrow cells on the regeneration of bone between the femoral and the tibial lengthenings. J Pediatr Orthop. 2009;29(6):643-649. doi: 10.1097/BPO.0b013e3181b2afb2
  • Liang W, Ding P, Qian J, et al. Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment. Cell Tissue Res. 2021;386(3):585-603. doi: 10.1007/s00441-021-03533-5
  • Fang TD, Salim A, Xia W, et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res. 2005;20(7):1114-1124. doi: 10.1359/JBMR.050301
  • Moore DC, Leblanc CW, Müller R, et al. Physiologic weight-bearing increases new vessel formation during distraction osteogenesis: a micro-tomographic imaging study. J Orthop Res. 2003;21(3):489-96. doi: 10.1016/S0736-0266(02)00234-6
  • Sinnesael M, Claessens F, Boonen S, Vanderschueren D. Novel insights in the regulation and mechanism of androgen action on bone. Curr Opin Endocrinol Diabetes Obes. 2013;20(3):240-244. doi: 10.1097/MED.0b013e32835f7d04
  • Popkov A, Foster P, Gubin A, et al. The use of flexible intramedullary nails in limb lengthening. Expert Rev Med Devices. 2017;14(9):741-753. doi: 10.1080/17434440.2017.1367284
  • Popkov A, Pietrzak S, Antonov A, et al. Limb Lengthening for Congenital Deficiencies Using External Fixation Combined With Flexible Intramedullary Nailing: A Multicenter Study. J Pediatr Orthop. 2021;41(6):e439-e447. doi: 10.1097/BP0.0000000000001816
  • Radomisli TE, Moore DC, Barrach HJ, et al. Weight-bearing alters the expression of collagen types I and II, BMP 2/4 and osteocalcin in the early stages of distraction osteogenesis. J Orthop Res. 2001;19(6):1049-1456. doi: 10.1016/S0736-0266(01)00044-4
  • Makhdom AM, Cartaleanu AS, Rendon JS, et al. The Accordion Maneuver: A Noninvasive Strategy for Absent or Delayed Callus Formation in Cases of Limb Lengthening. Adv Orthop. 2015;2015:912790. doi: 10.1155/2015/912790
  • Liu Y, Cai F, Liu K, et al. Cyclic Distraction-Compression Dynamization Technique Enhances the Bone Formation During Distraction Osteogenesis. Front Bioeng Biotechnol. 2022;9:810723. doi: 10.3389/fbioe.2021.810723
  • Makhdom AM, Cartaleanu AS, Rendon JS, et al. The Accordion Maneuver: A Noninvasive Strategy for Absent or Delayed Callus Formation in Cases of Limb Lengthening. Adv Orthop. 2015;2015:912790. doi: 10.1155/2015/912790
  • Waanders NA, Richards M, Steen H, et al. Evaluation of the mechanical environment during distraction osteogenesis. Clin Orthop Relat Res. 1998;(349):225-34. doi: 10.1097/00003086-199804000-00028
  • Mori S, Akagi M, Kikuyama A, et al. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-lalpha/vascular endothelial growth factor system. J Orthop Res. 2006;24(4):653-63. doi: 10.1002/jor.20076
  • Kim UK, Chung IK, Lee KH, et al. Bone regeneration in mandibular distraction osteogenesis combined with compression stimulation. J Oral Maxillofac Surg. 2006;64(10):1498-505. doi: 10.1016/j.joms.2006.03.028
  • Li R, Saleh M, Yang L, Coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339-347. doi: 10.1002/jor.20026
  • Donnan LT, Saleh M, Rigby AS, McAndrew A. Radiographic assessment of bone formation in tibia during distraction osteogenesis. J Pediatr Orthop. 2002;22(5):645-651.
  • Shevtsov V, Popkov A, Popkov D, Prévot J. Réduction de la durée du traitement dans les allongements osseux progressifs. Technique et advantage [Reduction of the period of treatment for leg lengthening. Technique and advantages]. Rev Chir Orthop Reparatrice Appar Mot. 2001;87(3):248-256. (In French)
  • Eldridge IC, Bell DF. Problems with substantial limb lengthening. Orthop Clin North Am. 1991;22(4):625-631.
  • Simpson AH, Kenwright J. Fracture after distraction osteogenesis. J Bone Joint Surg Br. 2000;82(5):659-665. doi: 10.1302/0301-620x.82b5.9945
  • Krishnan A, Pamecha C, Patwa JJ. Modified Ilizarov technique for infected nonunion of the femur: the principle of distraction-compression osteogenesis. J Orthop Surg (Hong Kong). 2006;14(3):265-272. doi: 10.1177/230949900601400307
  • Mofid MM, Inoue N, Atabey A, et al. Callus stimulation in distraction osteogenesis. Plast Reconstr Surg. 2002;109(5):1621-1629. doi: 10.1097/00006534-200204150-00020
  • Schmidt EC, Judkins LM, Manogharan G, et al. Current concepts in fracture healing: temporal dynamization and applications for additive manufacturing. OTA Int. 2022 M;5(1 Suppl):e164. doi: 10.1097/0I9.0000000000000164
  • Cardozo CP. Mechanotransduction: Overview. In: Zaidi M, ed. Encyclopedia of Bone Biology. Academic Press; 2020:217.
  • Isaksson H, Comas O, van Donkelaar CC, et al. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J Biomech. 2007;40(9):2002-2011. doi: 10.1016/j.jbiomech.2006.09.028
  • Pouliquen JC, Glorion C, Ceolin JL, et al. Allongement métaphysaire supérieur du tibia. 57 cas effectués par la méthode du callotasis chez l'enfant et l'adolescent [Upper metaphyseal lengthening of the tibia. Report of 57 cases in children and adolescents]. Rev Chir Orthop Reparatrice Appar Mot. 1994;80(6):532-541. (In French)
  • Claes L. Dynamisierung der Osteosynthese: Zeitpunkt und Methoden [Dynamization of fracture fixation: Timing and methods]. Unfallchirurg. 2018;121(1):3-9. (In German) doi: 10.1007/s00113-017-0455-6
  • Alzahrani MM, Anam E, AlQahtani SM, et al. Strategies of enhancing bone regenerate formation in distraction osteogenesis. Connect Tissue Res. 2018;59(1):1-11. doi: 10.1080/03008207.2017.1288725
  • Honcharuk EM, Cherkashin AM, Pierce WA, et al. Effect of axial dynamization in circular external fixation on bone segment vertical and lateral displacements. J Limb Lengthening Reconstr. 2021;7(1):37-44.
  • Fenton C, Henderson D, Samchukov M, et al. Comparative Stiffness Characteristics of Ilizarov- and Hexapod-type External Frame Constructs. Strategies Trauma Limb Reconstr. 2021;16(3):138-143. doi: 10.5005/jp-journals-10080-1539
  • Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon). 2003;18(2):166-172. doi: 10.1016/s0268-0033(02)00175-4
  • Claes L, Meyers N, Schülke J, et al. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction. PLoS One. 2018;13(8):e0202702. doi: 10.1371/journal.pone.0202702
  • Claes LE, Wilke HJ, Augat P, et al. Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon). 1995;10(5):227-234. doi: 10.1016/0268-0033(95)99799-8
Еще
Статья обзорная