Клеточный иммунитет у больных COVID-19: молекулярная биология, патофизиология и клиническое значение

Автор: Щербак Сергей Григорьевич, Вологжанин Дмитрий Александрович, Голота Александр Сергеевич, Камилова Татьяна Аскаровна, Макаренко Станислав Вячеславович

Журнал: Клиническая практика @clinpractice

Рубрика: Обзоры

Статья в выпуске: 2 т.13, 2022 года.

Бесплатный доступ

Пандемия COVID-19 вызвана коронавирусом SARS-CoV-2. С точки зрения того, что имеет значение для сдерживания вируса, наибольшее внимание привлекают нейтрализующие антитела к SARS-CoV-2, однако важно признать значение вирусспецифичного Т-клеточного ответа, который закладывает основу для эффективной выработки нейтрализующих антител. Большинство людей с инфекцией SARS-CoV-2 выживают и избавляются от вируса. Т-клеточные ответы развиваются рано, но относительно ослаблены при тяжелом течении заболевания, отчасти по причине лимфопении. Понимание роли различных субпопуляций Т-клеток в защите или патогенезе COVID-19 имеет решающее значение для профилактики и лечения. Профиль экспрессии различных Т-клеточных субпопуляций различается при COVID-19 различной степени тяжести и ассоциирован с величиной ответов Т-клеток и исходом заболевания. Структурные изменения генома, транскриптома и протеома SARS-CoV-2 способствуют появлению новых вариантов вируса, могут уменьшить его взаимодействие с антителами и таким образом помочь избежать нейтрализации. Существует сильная корреляция между количеством вирусспецифичных Т-клеток CD4 и титрами нейтрализующих антител IgG против SARS-CoV-2. Во время первичной вирусной инфекции наблюдается широкий разброс клеточных и гуморальных иммунных ответов, при этом пациенты с тяжелыми и продолжительными симптомами демонстрируют крайне несбалансированные клеточные и гуморальные иммунные ответы. В этом обзоре внимание уделяется генерации и клиническому значению клеточного иммунитета в защите от тяжелой острой инфекции и реинфекции, а также потенциальному участию перекрестно-реактивных Т-клеток, специфичных к сезонным коронавирусам, в ответе на SARS-CoV-2.

Еще

Covid-19, коронавирус sars-cov-2, клеточный иммунитет, иммунологическая память, нейтрализующие антитела, перекрестно-реактивный иммунитет

Короткий адрес: https://sciup.org/143178798

IDR: 143178798   |   DOI: 10.17816/clinpract106239

Список литературы Клеточный иммунитет у больных COVID-19: молекулярная биология, патофизиология и клиническое значение

  • Khanolkar A. Elucidating T cell and B cell responses to SARS-CoV-2 in humans: gaining insights into protective immunity and immunopathology. Cells. 2021;11(1):67. doi: 10.3390/cells11010067
  • Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186–193. doi: 10.1038/s41590-021-01122-w
  • Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2- specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457–462. doi: 10.1038/s41586-020-2550-z
  • Zeng C, Evans JP, King T, et al. SARS-CoV-2 spreads through cell-to-cell transmission. Proc Natl Acad Sci USA. 2022;119(1):e2111400119. doi: 10.1073/pnas.2111400119
  • Da Silva AR, Pallikkuth S, Williams E, et al. Differential T-Cell reactivity to endemic coronaviruses and SARSCoV- 2 in community and health care workers. J Infect Dis. 2021;224(1):70–80. doi: 10.1093/infdis/jiab176
  • Bergamaschi L, Mescia F, Turner L, et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity. 2021;54(6):1257–1275. doi: 10.1016/j.immuni.2021.05.010
  • Lucas C, Klein J, Sundaram ME, et al. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nat Med. 2021;27(7):1178–1186. doi: 10.1038/s41591-021-01355-0
  • Swadling L, Diniz OM, Schmidt NM, et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature. 2022;601(7891):110–117. doi: 10.1038/s41586-021-04186-8
  • Liu G, Jiang X, Zeng X, et al. Analysis of lymphocyte subpopulations and cytokines in COVID-19-associated pneumonia and community-acquired pneumonia. J Immunol Res. 2021;2021:6657894. doi: 10.1155/2021/6657894
  • Venet F, Gossez M, Bidar F, et al. T cell response against SARS-CoV-2 persists after one year in patients surviving severe COVID-19. EBioMedicine. 2022;78:103967. doi: 10.1016/j.ebiom.2022.103967
  • Le Bert N, Clapham HE, Tan AT, et al. Highly functional virusspecific cellular immune response in asymptomatic SARSCoV-2 infection. J Exp Med. 2021;218(5):e20202617. doi: 10.1084/jem.20202617
  • Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;18-4(7):1671–1692. doi: 10.1016/j.cell.2021.02.029
  • Bao C, Tao X, Cui W, et al. Natural killer cells associated with SARS-CoV-2 viral RNA shedding, antibody response and mortality in COVID-19 patients. Exp Hematol Oncol. 2021; 10(1):5. doi: 10.1186/s40164-021-00199-1
  • Yu KK, Fischinger S, Smith MT, et al. Comorbid illnesses are associated with altered adaptive immune responses to SARS-CoV-2. JCI Insight. 2021;6(6):e146242. doi: 10.1172/jci.insight.146242
  • King C, Sprent J. Dual nature of type I interferons in SARSCoV-2-induced inflammation. Trends Immunol. 2021;42(4): 312–322. doi: 10.1016/j.it.2021.02.003
  • Priyal M, Barmania F, Mellet J, et al. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol. 2022;12:809244. doi: 10.3389/fimmu.2021.809244
  • Carissimo G, Xu W, Kwok I, et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat Commun. 2020;11(1):1–12. doi: 10.1038/s41467-020-19080-6
  • Remy KE, Mazer M, Striker DA, et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020;5(17):e140329. doi: 10.1172/jci.insight.140329
  • Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020;21(11):1336–1345. doi: 10.1038/s41590-020-0782-6
  • Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511. doi: 10.1126/science.abc8511
  • Laing AG, Lorenc A, del Barrio I, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. 2020;26(10):1623–1635. doi: 10.1038/s41591-020-1038-6
  • Rodriguez L, Pekkarinen PT, Lakshmikanth T, et al. Systemslevel immunomonitoring from acute to recovery phase of severe COVID-19. Cell Rep Med. 2020;1(5):100078. doi: 10.1016/j.xcrm.2020.100078
  • Blanchard-Rohner G, Didierlaurent A, Tilmanne A, et al. Pediatric COVID-19: immunopathogenesis, transmission and prevention. Vaccines (Basel). 2021;9(9):1002. doi: 10.3390/vaccines9091002
  • Garibaldi BT, Fiksel J, Muschelli J, et al. Patient trajectories among persons hospitalized for COVID-19: a cohort study. Ann Intern Med. 2021;174(1):33–41. doi: 10.7326/M20-3905
  • Takahashi T, Ellingson MK, Wong P, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588(7837):315–320. doi: 10.1038/s41586-020-2700-3
  • Grifoni A, Sidney J, Vita R, et al. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe. 2021;29(7):1076–1092. doi: 10.1016/j.chom.2021.05.010
  • Braun, J. Loyal L, Frentsch M, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270–274. doi: 10.1038/s41586-020-2598-9
  • Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020;183(1):158–168. doi: 10.1016/j.cell.2020.08.017
  • Nguyen TH, Rowntree LC, Petersen J, et al. CD8(+)T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity. 2021;54(5):1066–1082. doi: 10.1016/j.immuni.2021.04.009
  • Notarbartolo S, Ranzani V, Bandera A, et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Sci Immunol. 2021;6(62):eabg5021. doi: 10.1126/sciimmunol.abg5021
  • Habel JR, Nguyen TH, van de Sandt CE, et al. Suboptimal SARS-CoV-2-specific CD8+ T cell response associated with the prominent HLA-A*02:01 phenotype. Proc Natl Acad Sci USA. 2020;117(39):24384–24391. doi: 10.1073/pnas.2015486117
  • Campbell KM, Steiner G, Wells DK, et al. Prioritization of SARSCoV-2 epitopes using a pan-HLA and global population inference approach. bioRxiv. 2020. doi: 10.1101/2020.03.30.016931
  • Weingarten-Gabbay S, Klaeger S, Sarkizova S, et al. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs. Cell. 2021;184(15):3962–3980. doi: 10.1016/j.cell.2021.05.046
  • Kusnadi A, Ramírez-Suástegui C, Fajardo V, et al. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8+ T cells. Sci Immunol. 2021; 6(55):eabe4782. doi: 10.1126/sciimmunol.abe4782
  • Rydyznski-Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996–1012.e19. doi: 10.1016/j.cell.2020.09.038
  • Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027
  • Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARSCoV-2 assessed for up to 8 months after infection. Science. 2021;371(6529):eabf4063. doi: 10.1126/science.abf4063
  • Wang Z, Yang X, Zhong J, et al. Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun. 2021;12(1):1724. doi: 10.1038/s41467-021-22036-z
  • Choe PG, Kang CK, Suh HJ, et al. Waning antibody responses in asymptomatic and symptomatic SARS-CoV-2 infection. Emerging Infect Dis. 2021;27(1):327–329. doi: 10.3201/eid2701.203515
  • Mateus J, Grifoni A, Tarke A, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370(6512):89–94. doi: 10.1126/science.abd3871
  • Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol. 2020;20(8):457–458. doi: 10.1038/s41577-020-0389-z
  • Poon MM, Rybkina K, Kato Y, et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci Immunol. 2021;6(65):eabl9105. doi: 10.1126/sciimmunol.abl9105
  • Szabo PA, Dogra P, Gray JI, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity.2021;54(4):797–814.e6. doi: 10.1016/j.immuni.2021.03.005
  • Zhao Y, Kilian C, Turner JE, et al. Clonal expansion and activation of tissue-resident memory-like Th17 cells expressing GM-CSF in the lungs of severe COVID-19 patients. Sci Immunol. 2021;6(56):eabf6692. doi: 10.1126/sciimmunol.abf6692
  • Rha MS, Jeong HW, Ko JH, et al. PD-1-Expressing SARSCoV-2-specific CD8 + T cells are not exhausted, but functional in patients with COVID-19. Immunity. 2021;54(1):44–52. doi: 10.1016/j.immuni.2020.12.002
  • Tarke A, Sidney J, Kidd CK, et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021;2(2):100204. doi: 10.1016/j.xcrm.2021.100204
  • Boppana S, Qin K, Files JK, et al. SARS-CoV-2-specific circulating T follicular helper cells correlate with neutralizing antibodies and increase during early convalescence. PLoS Pathog. 2021;17(7):e1009761. doi: 10.1371/journal.ppat.1009761
  • Verhagen J, van der Meijden ED, Lang V, et al. Human CD4+T cells specific for dominant epitopes of SARS-CoV-2 Spike and Nucleocapsid proteins with therapeutic potential. Clin Exp Immunol. 2021;205(3):363–378. doi: 10.1111/cei.13627
  • Nagler A, Kalaora S, Barbolin C, et al. Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Rep. 2021;35(13):109305. doi: 10.1016/j.celrep.2021.109305
  • Hu Zi, van der Ploeg K, Chakraborty S, et al. Early immune responses have long-term associations with clinical, virologic, and immunologic outcomes in patients with COVID-19. Res Sq. 2022;rs.3.rs-847082. doi: 10.21203/rs.3.rs-847082/v1
  • Yamada T, Sato S, Sotoyama Y, et al. RIG-I triggers a signalingabortive anti-SARS-CoV-2 defense in human lung cells. Nat Immunol. 2021;22(7):820–828. doi: 10.1038/s41590-021-00942-0
  • Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021; 591(7848):92–98. doi: 10.1038/s41586-020-03065-y
  • Adamo S, Michler J, Zurbuchen Y, et al. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature. 2022;602(7895):148–155. doi: 10.1038/s41586-021-04280-x
  • Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y. T-cell dysregulation in COVID-19. Biochem Biophys Res Commun. 2021;538:204–210. doi: 10.1016/j.bbrc.2020.10.079
  • Sette A, Crotty S. Adaptive immunity to SARSCoV-2 and COVID-19. Cell. 2021;184(4):861–880. doi: 10.1016/j.cell.2021.01.007
  • Bilich T, Nelde A, Heitmann JS, et al. T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals. Sci Transl Med. 2021;13(590):eabf7517. doi: 10.1126/scitranslmed.abf7517
  • Cohen KW, Linderman S, Moodie Z, et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep Med. 2021;2(7):100354. doi: 10.1016/j.xcrm.2021.100354
  • Jung JH, Rha MS, Sa M, et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem celllike memory T cells. Nat Commun. 2021;12(1):4043. doi: 10.1038/s41467-021-24377-1
  • Laurén I, Havervall S, Ng H, et al. Long-term SARS-CoV-2-specific and cross-reactive cellular immune responses correlate with humoral responses, disease severity, and symptomatology. Immun Inflamm Dis. 2022;10(4):e595. doi: 10.1002/iid3.595
  • Sagar M, Reifler K, Rossi M, et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J Clin Invest. 2021;131(1):e143380. doi: 10.1172/JCI143380
  • Peng Y, Felce SL, Dong D, et al. An immunodominant NP 105-113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nat Immunol. 2022;23(1):50–61. doi: 10.1038/s41590-021-01084-z
  • Ng KW, Faulkner N, Cornish GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020;370(6522):1339–1343. doi: 10.1126/science.abe1107
  • Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2- what do they mean? JAMA. 2021;325(6):529–531. doi: 10.1001/jama.2020.27124
  • Moeller NH, Shi K, Demir Ö, et al. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Proc Natl Acad Sci U S A. 2022;119(9):e2106379119. doi: 10.1073/pnas.2106379119
  • SARS-CoV-2 variants of concern as of 7 April 2022. European Centre for Disease Prevention and Control. Available from: https://www.ecdc.europa.eu/en/covid-19/variants-concern. Accessed: 15.02.2022.
  • Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell. 2021;184(16):4220–4236. doi: 10.1016/j.cell.2021.06.020
  • Legros V, Denolly S, Vogrig M, et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021;18(2):318–327. doi: 10.1038/s41423-020-00588-2
  • Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARSCoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399(10332):1303–1312. doi: 10.1016/S0140-6736(22)00462-7
  • Pulliam JR, van Schalkwyk C, Govender N, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. Science. 2022;376(6593):eabn4947. doi: 10.1126/science.abn4947
  • Ford CT, Machado JD, Janies DA. Predictions of the SARSCoV-2 Omicron variant (B.1.1.529) spike protein receptor-binding domain structure and neutralizing antibody interactions. bioRxiv. 2021;2021.12.03.471024. doi: 10.1101/2021.12.03.471024
  • Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022;185(5):847–859.e11. doi: 10.1016/j.cell.2022.01.015
  • Woldemeskel BA, Garliss CC, Blankson JN. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J Clin Invest. 2021;131(10):e149335. doi: 10.1172/JCI149335
  • De Silva TI, Liu G, Lindsey BB, et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T-cells. Science. 2021;24(11):103353. doi: 10.1016/j.isci.2021.103353
  • Zhang Y, Chen Y, Li Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci USA. 2021;118(23):e2024202118. doi: 10.1073/pnas.2024202118
  • Tarke A, Sidney J, Methot N, et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep Med. 2021;2(7):100355. doi: 10.1016/j.xcrm.2021.100355
  • Guo L, Wang G, Wang Y, et al. SARS-CoV-2-specific antibody and T-cell responses 1 year after infection in people recovered from COVID-19: a longitudinal cohort study. Lancet Microbe. 2022;3(5):e348–e356 doi: 10.1016/S2666-5247(22)00036-2
  • Lauro R, Irrera N, Eid AH, Bitto A. Could antigen presenting cells represent a protective element during SARS-CoV-2 infection in children? Pathogens. 2021;10(4):476. doi: 10.3390/pathogens10040476
  • Fung SY, Yuen KS, Ye ZW, et al. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020;9(1):558–570. doi: 10.1080/22221751.2020.1736644
  • Kaneko N, Kuo HH, Boucau J, et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell. 2020;183(1):143–157. doi: 10.1016/j.cell.2020.08.025
  • Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. IImmunity. 2020;52(6):971–977. doi: 10.1016/j.immuni.2020.04.023
  • Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200–1204. doi: 10.1038/s41591-020-0965-6
  • Turner JS, Kim W, Kalaidina E, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595(7867):421–425. doi: 10.1038/s41586-021-03647-4
  • Hartley GE, Edwards ES, Aui PM, et al. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci Immunol. 2020; 5(54):eabf8891. doi: 10.1126/sciimmunol.abf8891
  • Gaebler C, Wang Z, Lorenzi JC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591(7851):639–644. doi: 10.1038/s41586-021-03207-w
  • Zaman MS, Sizemore RC. Diverse manifestations of COVID-19: some suggested mechanisms. Int J Environ Res Public Health. 2021;18(18):9785. doi: 10.3390/ijerph18189785
  • Zhang JY, Wang XM, Xing X, et al. Single-cell landscape of immunological responses in patients with COVID-19. Nature Immunol. 2020;21(9):1107–1118. doi: 10.1038/s41590-020-0762-x
  • Saini SK, Hersby DS, Tamhane T, et al. SARS-CoV-2 genomewide T cell epitope mapping reveals immunodominance and substantial CD8(+) T cell activation in COVID-19 patients. Sci Immunol. 2021;6(58):eabf7550. doi: 10.1126/sciimmunol.abf7550
  • Wellington D, Yin Z, Kessler BM, Dong T. Immunodominance complexity: lessons yet to be learned from dominant T cell responses to SARS-COV-2. Curr Opin Virol. 2021;50:183–191. doi: 10.1016/j.coviro.2021.08.009
  • Lineburg KE, Grant EJ, Swaminathan S, et al. CD8 + T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity. 2021;11;54(5):1055–1065. doi: 10.1016/j.immuni.2021.04.006
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous primeboost COVID-19 vaccine: an interim analysis of a randomized controlled phase 3 trial in Russia. Lancet. 2021;397(10275): 671–681. doi: 10.1016/S0140-6736(21)00234-8
  • Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021;595(7868):572–577. doi: 10.1038/s41586-021-03653-6
  • Baden LR, Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021; 384(5):403–416. doi: 10.1056/NEJMoa2035389
  • Oberhardt V, Luxenburger H, Kemming J, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597(7875):268–273. doi: 10.1038/s41586-021-03841-4
  • Skelly DT, Harding AC, Gilbert-Jaramillo J, et al. Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nat Commun. 2021;12(1):5061. doi: 10.1038/s41467-021-25167-5
  • Mazzoni A, Di Lauria N, Maggi L, et al. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID-19. J Clin Invest. 2021;131(12):e149150. doi: 10.1172/JCI149150
  • McLean G, Kamil J, Lee B, et al. The impact of evolving SARSCoV- 2 mutations and variants on COVID-19 vaccines. mBio. 2022;13(2):e0297921. doi: 10.1128/mbio.02979-21
  • Haranaka M, Baber J, Ogama Y, et al. A randomized study to evaluate safety and immunogenicity of the BNT162b2 COVID-19 vaccine in healthy Japanese adults. Nat Commun. 2021;12(1):7105. doi: 10.1038/s41467-021-27316-2
  • Skowronski DM, de Serres G. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N Engl J Med. 2021;384(16):1576–1577. doi: 10.1056/NEJMc2036242
  • Keller MD, Harris KM, Jensen-Wachspress MA, et al. SARS-CoV-2-specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood. 2020;136(25):2905–2917. doi: 10.1182/blood.2020008488
  • Basar R, Uprety N, Ensley E, et al. Generation of glucocorticoidresistant SARS-CoV-2 T cells for adoptive cell therapy. Cell Rep. 2021;36(3):109432. doi: 10.1016/j.celrep.2021.109432
  • Cooper RS, Fraser AR, Smith L, et al. Rapid GMP-compliant expansion of SARS-CoV-2-specific T cells from convalescent donors for use as an allogeneic cell therapy for COVID-19. Front Immunol. 2021;11:598402. doi: 10.3389/fimmu.2020.598402
  • Pérez-Martínez A, Mora-Rillo M, Ferreras C, et al. Phase I dose-escalation single centre clinical trial to evaluate the safety of infusion of memory T cells as adoptive therapy in COVID-19 (RELEASE). Clinical Medicine. 2021;39:101086. doi: 10.1016/j.eclinm.2021.101086
  • Gladstone DE, Kim BS, Mooney K, et al. Regulatory T cells for treating patients with COVID-19 and acute respiratory distress syndrome: two case reports. Ann Intern Med. 2020;173(10): 852–853. doi: 10.7326/L20-0681
  • Baeten P, van Zeebroeck L, Kleinewietfeld M, et al. Improving the efficacy of regulatory T cell therapy. Clin Rev Allergy Immunol. 2022;62(2):363–381. doi: 10.1007/s12016-021-08866-1
Еще
Статья обзорная