Investigating the influence of carbon nanotube-based additives on the phase composition of cement mortar during well cementation

Автор: Roza Il. Vakhitova, Diana A. Saracheva, Ilgam K. Kiyamov, Linar S. Sabitov, Vasily Iv. Oleinik

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Study of properties of nanomaterials

Статья в выпуске: 5 Vol.15, 2023 года.

Бесплатный доступ

Introduction. This article presents the outcomes of research investigations examining the impact of carbon nanotube additives on the phase composition of cement mortars employed in well cementing operations. The quality of work on cementing and ensuring the impermeability of the casing string is quite important in terms of ecological compliance. Research methods. To solve this problem, heavy concrete was modified with a carbon nanoadditive. For research, a cement stone obtained by normalmoisture curing was chosen. Cement mortar CEM III/A32.5H was mixed with tap water for curing, preliminarily stirring a suspension of carbon nanotubes in water solution, a mixture of a water repellent and a hyperplasticizer. To ensure a homogeneous and highly dispersed structure of this suspension, its constituent components were subjected to preliminary dispersion in an ultrasonic field. Results and their discussion. The optimal ratio of carbon nanotubes in the composition of the cement mortar was determined, which amounted to 0.005% of the mass of cement for single-walled carbon nanotubes and 0.0005% for multilayer ones. The process of influence of the selected modifiers on the hydration products and the phase composition of the cement mortar was studied. An additive of complex action, including single-layer carbon nanotubes, was dispersed into solutions of a mixture of hydrophobic and hydrophilic surfactants, which made it possible to increase the strength of cement mortars up to 55%. Conclusion. In terms of modification, single-walled carbon nanotubes are the most efficient.

Еще

Carbon nanotubes, cement mortar, hyperplasticizer, water repellent, nanomaterial

Короткий адрес: https://sciup.org/142238321

IDR: 142238321   |   DOI: 10.15828/2075-8545-2023-15-5-418-423

Список литературы Investigating the influence of carbon nanotube-based additives on the phase composition of cement mortar during well cementation

  • Khavkin A.Ya. Nanoyavleniya i nanotekhnologii v dobyche nefti i gaza [Nanotechnologies and nanotechnologies in oil and gas production]. Moscow – Izhevsk, NITS «Regulyarnaya i khaoticheskaya dinamika», Institut komp’yuternykh issledovaniy (SIC «Regular and chaotic dynamics», Institute for Computer Studies); 2010.
  • Pasovets V.N., Kovtun V.A. Hardening of composite materials based on a metal matrix and carbon nanotubes. Proceedings of the National Academy of Sciences of Belarus. Series of physical and technical sciences. 2019; 64 (2): 166-174.
  • Falikman V.R. Nanomaterialy i nanotekhnologii v sovremennykh betonakh. Promyshlennoye i grazhdanskoye stroitel’stvo. 2013; 1:31-34 (in Russian).
  • Rayati S., Chegini E.K. Highly selective and green oxidation of sulfides with urea hydrogen peroxide in the presence of MN(III) porphyrin supported onto carbon nanotubes. Macroheterocycles. 2016; 9(2): 151-155.
  • Ponomarev A.N. Nanobeton – kontseptsiya i problemy. Sinergizm nanostrukturirovaniya tsementnykh vyazhushchikh i anizotropnykh dobavok. Stroitel’nyye materialy. 2007; 6. (in Russian).
  • Dzhamanbalin K.K. Novyye intellektual’nyye materialy – fullereny i uglerodnyye nanotrubki. Izvestiya vysshikh uchebnykh zavedeniy. Ural’skiy region. 2023; 1: 72-76 (in Russian).
  • Lykah V.A., Syrkin E.S. Functionalized semiconducting carbon nanotubes: three models for carrier spectra. Chemistry, Physics and Technology of Surface. 2010; 1(3): 296-302.
  • Gutnik I.V., Dyachkova T.P., Rukhov A.V., Burakova E.A., Tugolukov E.N., Alekseev S.Yu., Kodirov B.B., Titova G.A. Polyaniline/carbon nanotubes composites: kinetic laws of synthesis, morphology and properties. Advanced Materials and Technologies. 2018; 4: 54-68.
  • Deeraj B.D.S., Jayanarayanan K., Kuruvilla J. High performance in-situ composites developed from polypropylene/nylon 6/carbon nanotube blend systems. Journal of Siberian Federal University. Biology. 2018; 11(2): 157-165.
  • Voytovich V.A., Khryapchenkova I.N. Nanobeton v stroitel’stve. Stroitel’nyye materialy. 2016; 9:73-75 (in Russian).
  • Huseynova L.V., Huseynova M.A. The environmentally friendly technologies for oil sludge utilizing. Modern Sci. 2018; 3:143–147.
  • Shah K.A., Najar F.A., Andrabi S.M.A., Islam S.S. Synthesis of carbon nanotubes for device applications. Asian Journal of Chemistry. 2017; 29(4):879-881.
  • Danoglidis Panagiotis A., Falara Maria G., Maglogianni Myrsini, Konsta-Gdoutos Maria S. Scalable processing of cementitious composites reinforced with carbon nanotubes (CNTS) and carbon nanofibers (CNFS). Nanotekhnologii v stroitel’stve: nauchnyy internet-zhurnal [Nanotechnology in construction: a scientific online magazine]. 2019; 11(1):20-27. https://doi.org/10.15828/2075-8545-2019-11-1-20-27
  • Yakovlev G.I., Pervushin G.N., Bur’yanov A.F., Kodolov V.I., Krutikov V.A., Fisher F.-B., Kerene Ya. Modifikatsiya porizovannykh tsementnykh matrits uglerodnymi nanotrubkami [Modification of porous cement matrices with carbon nanotubes]. Stroitel’nye materialy [Construction materials]. 2009; 3:99-102 (in Russian).
  • Khussein S.M.R.H., Hanfar A. Uglerodnyye nanotrubki: problemy i perspektivy ikh ispolzovaniya [Carbon nanotubes: problems and prospects for their use]. Uspekhi sovremennoy nauki - Advances in modern science. 2017; 4 (4): 166-169 (in Russian).
  • Tang Q., Huang J., Tian G. Dispersion of carbon nanotubes and research progress on mechanical properties of carbon nanotubes cement-based composites. Gongneng Cailiao. 2017; 48 (6): 42-49.
  • László I., Gyimesi B., Koltai J., Kürti J. Molecular dynamics simulation of carbon structures inside small diameter carbon nanotubes. Physica Status Solidi (B): Basic Solid State Physics. 2017; 254 (11): 170-206.
  • Rudenkov A.S., Yarmolenko M.A. Carbon nanotubes: classification, synthesis features, research methods, applications. Problems of physics, mathematics and technology. 2019; 2 (39): 7-14 (in Russian).
  • Zhdanok S.A., Potapov V.V., Polonina E.N., Leonovich S.N. Modification of cement concretes with additives containing nanosized materials. Engineering Physics Journal. 2020; 93(3):669-673 (in Russian).
  • Ilyina V.N., Ilyin S.V., Gafarova V.A., Kuzeev I.R. Influence of nanocarbon fillers on the properties of composite materials. Nanotechnologies in construction: A Scientific Internet – Journal. 2023; 15(3): 228-237 (in Russian).
  • Kel A.V. Fullerenes and carbon nanotubes. Innovatsion. Nauka. 2016; 11(3): 23–25 (in Russian).
  • Altunina L.K., Svarovskaya L.I. Detergent compositions for oil sludge reclamation. Petrol. Chem. 2012; 52 (2): 130–132. https://doi.org/10.1134/S0965544112010033
  • Saikia N.J., Sengupta P., Gogoi P.K., Borthakur P.C. Physicochemical and cementitious properties of sludge from oil field effluent treatment plant. Cement Concr. Res. 2001; 31 (8): 1221–1225.
  • Deza M., Sikirić M.D., Shtogrin M.I. Fullerenes and disk-full-erenes. Russ. Mathemat. Surv. 2013; 68 (4): 665–720. https://doi.org/10.1070/RM2013v068n04ABEH004850
  • Kroto H. C60, fullerenes, giant fullerenes and soot. Pure and Appl. Chem. 1990; 62 (3): 407 – 415. https://doi.org/10.1351/pac199062030407
  • Guz A.N., Rushchitskii Y.Y. Nanomaterials: on the mechanics of nanomaterials. International applied mechanics. 2003; 39(11): 1271-1293. https://doi.org/10.1023/B:INAM.0000015598.53063.26
  • GOST 310.4-81 Tsementy. Metody opredeleniya predela prochnosti pri izgibe i szhatii (in Russian).
Еще
Статья научная