Генетические основы формирования головного мозга крысы в период эмбриогенеза

Автор: Бонь Елизавета Игоревна

Журнал: Тюменский медицинский журнал @tmjournal

Статья в выпуске: 2 т.21, 2019 года.

Бесплатный доступ

В настоящей работе проведен анализ и обобщение данных литературы о генетических основах формирования головного мозга крысы в период эмбриогенеза. Схема активации генов в некоторой степени весьма сходна для человека и некоторых животных, что позволяет использовать полученные в эксперименте сведения для последующих клинических исследований.

Крысы, головной мозг, гены, эмбриогенез

Короткий адрес: https://sciup.org/140257628

IDR: 140257628   |   DOI: 10.36361/2307-4698-2019-21-2-28-31

Список литературы Генетические основы формирования головного мозга крысы в период эмбриогенеза

  • Acampora D, Postiglione M. P., Avantaggiato V. et al. Progressive impairment of developing neuroendocrine cell lineales in the hypothalamus of mice lacking the Orthopedia gene Genes Dev. 1999;13:2787-2800.
  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR. Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes Science. 1997;278:474-476.
  • Anderson SA, Marn O, Horn C, et al. Distinct cortical migrations from the medial and lateral ganglionic eminences Development. 2001;128:353-363.
  • Arimatsu Y, Ishida M. Early patterning of the rat cerebral wall for regional organization of a neuronal population expressing latexin. Dev. Brain Res. 1998;106:71-78.
  • Avantaggiato V, Pandolfi P, Ruthardt M, et al. Developmental anlisis of murine Promyelocyte Leucemia Zinc Finger (PLZF) gene expression: Implications for the neuromeric model of the forebrain organization J. Neurosci. 1995;15:4927-4942.
  • Bachy I, Vernier P, Retaux S. The LIM-homeodomain gene family in the Xenopus brain: Conservation and divergences with the mouse related to the evolution of the forebrain J. Neurosci. 2001;21:7620-7609.
  • Barth K, Wilson S. Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demacates a zone of neuronal differentiation in the embryonic forebrain Development. 1995;121:1755-1768.
  • Bastian H, Gruss P. A murine even-skipped homologue, Evx1, is expressed during early embryogenesis and neurogenesis in a biphasic manner EMBO. 1990;9:1839-1852.
  • Berquist H. Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates J. Comp. Neurol. 1954;100:627-659.
  • Bertuzzi S, Porter F. Characterization of Lhx9, a novel LIM/homeobox gene expressed by the pioneer neurons in the mouse cerebral cortex. Mech. Dev. 1999;81:193-198.
  • Bosse A, Gruss P. Identification of the vertebrate Iroqois homeobox gene family with overlapping expression during early development of the nervous system. Mech. Dev. 1997;69:169-181.
  • Briscoe J, Sussel L. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signaling. Nature. 1999;398:622-627.
  • Broccoli V, Colombo E. Dmbx1 is a pairedbox containing gene specifically expressed in the caudalmost brain structures. Mech. Dev. 2002;114:219-223.
  • Bulchand S. LIM-homeodomain gene Lhx2 regulates the formation of the cortical. Mech. Dev. 2001;100:185-175.
  • Bulfone A, Puelles L. Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci. 1993;13:3155-3172.
  • Bulfone A. T-brain-1: A homolog of Brachiury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron. 1995;15:63-78.
  • Cambronero F, Puelles L. Rostrocaudal nuclear relationships in the avian medulla oblongata: A fate map with quail/chick chimeras. J. Comp. Neurol. 2000;427:522-545.
  • Cobos I, Shimamura K, Rubenstein JL, et al. Fate map of the avian anterior forebrain at the four-somite stage, based on the anбlisis of quail-chick chimeras. Dev. Biol. 2001;239:46-67.
  • Liu JK, Ghattas I. The Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev. Dyn. 1997;210:498-512.
  • Lu S, Shashikant C. S, Ruddle F. H. Separate cis-acting elements determine the expression of mouse Dbx gene in multiple spatial domains of the central nervous system. Mech. Dev. 1996;58:193-202.
  • Lu S, Wise TL. Mouse homeobox gene Dbx: Sequence, gene structure and expression pattern during midgestation. Mech. Dev. 1994;47:187-195.
  • Marcus RC, Shimamura K. Domains of regulatory gene expression and the developing optic chiasm: Correspondence with retinal axon paths and candidate signaling cells. J. Comp. Neurol. 1999;403:346-358.
  • Marin F, Puelles L. Morphological fate of rhombomeres in quail/chick chimeras: A segmental analysis of hindbrain nuclei. Eur. J. Neurosci. 1995;7:1714-1738.
  • Marn O, Rubenstein J. A long, remarkable journey: Tangential migration in the telencephalon. Nat. Rev. Neurosci. 2001;2:780-790.
  • Pearson CS, Hänzi B, Osborne A, et al. Expression of Developmentally Important Axon Guidance Cues in the Adult Optic Chiasm. Invest Ophthalmol Vis Sci. 2019;60 (14):4727-4739.
  • Zhuang Y, Chen J, Xu W, et al. The Detection of 5-Hydroxymethylcytosine in Neural Stem Cells and Brains of Mice. J Vis Exp. 2019;19:151-159.
Еще
Статья обзорная