Features of L-amino acid adsorption on nanocrystalline anatase

Автор: Bolshakov O.I., Potemkin V.A., Grishina M.A., Galushko A.S., Merzlov S.V., Morozov R.S., Shchelokov A.O., Popov V.V.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry

Рубрика: Неорганическая химия

Статья в выпуске: 1 т.9, 2017 года.

Бесплатный доступ

Affinity characteristics of biomolecules, such as peptides and proteins, towards inorganic surfaces in general and to titanium oxide in particular become crucial in biotechnology and bionanotechnology. Amino acids are often used as “model” bits of peptides or proteins for studying their properties in different environments, and/or developing functional surfaces. Despite the great demand for knowledge about amino acid interactions with metal oxide surface, studies on the issue lack in consistency and represent a fragmentary picture. This paper is an attempt to study amino acid adsorption on nanocrystalline anatase systematically at uniform conditions. Features of the L-alanine adsorption have been revealed and interpreted with quantum-chemical calculations.

Еще

Titanium oxide, anatase, nanoparticles, l-amino acid, adsorption, ir-spectroscopy, nmr-spectrometry, l-аминокислоты

Короткий адрес: https://sciup.org/147160380

IDR: 147160380   |   DOI: 10.14529/chem170101

Список литературы Features of L-amino acid adsorption on nanocrystalline anatase

  • Weiner S., Dove P.M. Biomineralization, Reviews in Mineralogy and Geochemistry, 2003, vol. 54, pp. 1-29.
  • Albrektsson T., Branemark P.I., Hansson H.A., Kasemo B., Larsson K., Lundstrom I., McQueen D.H., Skalak R. The Interface Zone of Inorganic Implants In vivo: Titanium Implants in Bone. Annals of Biomedical Engineering, 1983, vol. 11, pp. 1-66 DOI: 10.1007/BF02363944
  • Duruphthy O., Bill J., Aldinger F. Bioinspired Synthesis of Crystalline TiO2: Effect of Amino Acids on Nanoparticles Structure and Shape. Crystal Growth and Design, 2007, vol. 7, pp. 2696-2704 DOI: 10.1021/cg060405g
  • Köppen S., Bronkalla O., Langel W. Adsorption Configurations and Energies of Amino Acids on Anatase and Rutile Surfaces. Journal of Physical Chemistry B, 2008, vol. 112, pp. 13600-13606 DOI: 10.1021/jp803354z
  • Addadi L., Weiner S. Interactions Between Acidic Proteins and Crystals: Stereochemical Requirements in Biomineralization. Proceedings of National Academy of Science U.S.A., 1985, vol. 82, pp. 4110-4114 DOI: 10.1073/pnas.82.12.4110
  • Oren E.E., Tamerler C., Sahin D., Hnilova M., Seker U.O.S., Sarikaya M., Samudrala R. A Novel Knowledge-Based Approach to Design Inorganic-Binding Peptides. Bioinformatics, 2007, vol. 23, pp. 2816-2822 DOI: 10.1093/bioinformatics/btm436
  • Rezania A., Johnson R., Lefkow A.R., Healy K.E. Bioactivation of Metal Oxide Surfaces. Surface Characterization and Cell Response. Langmuir, 1999, vol. 15, pp. 6931-6939 DOI: 10.1021/la990024n
  • Gratzel M. Photoelectrochemical cells. Nature, 2001, vol. 414, pp. 338-344 DOI: 10.1038/35104607
  • Kubota Y., Shuin T., Kawasaki C., Hosaka M., Kitamura H., Cai R., Sakai H., Hashimoto K., Fujishima A. Photokilling of T-24 Human Bladder Cancer Cells with Titanium Dioxide. British Journal of Cancer, 1994, vol. 70, pp. 1107-1111 DOI: 10.1038/bjc.1994.456
  • Sun R.D., Nakajima A., Fujishima A., Watanabe T., Hashimoto K. Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films. Journal of Physical Chemistry B, 2001, vol. 105, pp. 1984-1990 DOI: 10.1021/jp002525j
  • Diebold U. Surface Science of Titanium Dioxide. Surface Science Reports, 2003, vol. 48, pp. 53-229 DOI: 10.1016/S0167-5729(02)00100-0
  • Topoglidis E., Lutz T., Willis R.L., Barnett C.J., Cass A.E.G., Durrant J.R. Protein Adsorption on Nanoporous TiO2 Films: a Novel Approach to Studying Photoinduced Protein/Electrode Transfer Reactions. Faraday Discussions, 2000, vol. 116, pp. 35-46 DOI: 10.1039/B003313H
  • Mudunkotuwa I.A., Grassian V.H. Histidine Adsorption on Nanoparticles: An Integrated Spectroscopic, Thermodynamic, and Molecular-Based Approach toward Understanding Nano-Bio Interactions. Langmuir 2014, vol. 30, 8751-8760 DOI: 10.1021/la500722n
  • Okazaki S., Aoki T., Tani K. The Adsorption of Basic α-Amino Acids in an Aqueous Solution by Titanium(IV) Oxide. Bulletin of Chemical Society of Japan, 1981, vol. 54, pp. 1595-1599 DOI: 10.1246/bcsj.54.1595
  • Praveen P., Viruthagiri G., Mugundan S., Shanmugam N. Structural, Optical and Morphological Analyses of Pristine Titanium Dioxide Nanoparticles -Synthesized via Sol-Gel Route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 117, pp. 622-629 DOI: 10.1016/j.saa.2013.09.037
  • Heinrikson R.L., Meredith S.C. Amino Acid analysis by Reverse-phase High-Performance Liquid Chromatography: Precolumn Derivatization with Phenylisothiocyanate. Analytical Biochemistry, 1984, vol. 136, pp. 65-74 DOI: 10.1016/0003-2697(84)90307-5
  • Cheeseman J.R., Trucks G.W., Keith T.A., Frisch M.J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys., 1996, vol. 104, pp. 5497-5509 DOI: 10.1063/1.471789
  • Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem., 1993, vol. 14, pp. 1347-1363 DOI: 10.1002/jcc.540141112
  • Gordon M.S., Schmidt M.W. Advances in Electronic Structure Theory: GAMESS a Decade Later. Chapter 41. in: Theory and Applications of Computational Chemistry, the First Forty Years (C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria, eds.). Amsterdam: Elsevier, 2005, pp. 1167-1189.
  • Kandegedara A., Rorabacher D.B. Noncomplexing Tertiary Amines as "Better" Buffers Covering the Range of pH 3-11. Temperature Dependence of Their Acid Dissociation Constants. Analytical Chemistry, 1999, vol. 71, pp. 3140-3144 DOI: 10.1021/ac9902594
  • Ojamae L., Aulin C., Pedersen H., Kall P.O. IR and Quantum-Chemical Studies of Carboxylic Acid and Glycine Adsorption on Rutile TiO2 Nanoparticles. Journal of Colloid Interface Science, 2006, vol. 296, pp. 71-78 DOI: 10.1016/j.jcis.2005.08.037
  • Schmidt M.; Steinemann S. G. XPS Studies of Amino-Acids Adsorbed on Titanium Dioxide Surfaces. Fresenius’ Journal of Analytical Chemistry, 1991, vol. 341, pp. 412-415 DOI: 10.1007/BF00321947
  • Chen J., Franking R., Ruther R.E., Tan Y., He X., Hogendoorn S.R., Hamers R.J. Formation of Molecular Monolayers on TiO2 Surfaces: A Surface Analogue of the Williamson Ether Synthesis. Langmuir, 2011, vol. 27, pp. 6879-6889 DOI: 10.1021/la2008528
  • Gottlieb H.E., Kotlyar V., Nudelman A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. Journal of Organic Chemistry, 1997, vol. 62, pp. 7512-7515 DOI: 10.1021/jo971176v
  • Reichardt C., Welton T. Solvents and Solvent Effects in Organic Chemistry. 4th Edition. Berlin: Wiley-VCH, 2010. 718 p DOI: 10.1002/9783527632220
Еще
Статья научная