Exploring the role of high-temperature stress on medicinal plants: a review

Автор: Tamta P., Patni B.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.19, 2023 года.

Бесплатный доступ

The earth is becoming warmer day by day, consistent with the study earth's temperature has ascended to 0.74 °C and is close to increasing from 1.8° C to 4° C by 2100. Worldwide heating is anticipating endure a typically terrible impact on plant ontogenesis. Plants' diversity and productivity are adversely suffering from abiotic ecological factors. Thermal stress is now becoming the main concern for plants everywhere. The growing risk of climatological extremes, such as very excessive temperatures, might result in a catastrophic lack of crop productiveness and bring about extensive famine. Within the boom situation of plant life, several secondary metabolites are produced with the aid of them to serve a ramification of cell capabilities vital for physiological approaches. In developing nations, aromatic and medicinal vegetation is still utilizing in conventional and alternative drug treatments. In India, medicinal vegetation is being used in conventional medication to treat diverse illnesses. Within the past years, numerous research highlighted the healing properties and biological activities of medicinal plants such as Artemisia annua , A. sativum, Andrographis paniculata, Cymbopogon flexuosus , Foeniculum vulgar, Ferula asafoetida Mentha piperita, Solanum nigrum, Piper nigrum, Tagetes minuta, Trigonella foenum, Ocimum sanctum. Excessive levels of heat in medicinal vegetation exploitation are caused by abiotic stress outcomes with the production of ROS inside the cell chambers of a plant cell, which ultimately have a tremendous effect on secondary metabolite production. The excessive temperature has a wide variety of consequences on plant life in phrases of physiology, biochemistry, and gene regulatory pathways. Right here, we provide an assessment of the impact of temperature on numerous medicinal flora.

Еще

Weather change, global warming, heat stress, medicinal herb, ros, rns, secondary metabolites

Короткий адрес: https://sciup.org/143180563

IDR: 143180563

Список литературы Exploring the role of high-temperature stress on medicinal plants: a review

  • Balick, M. J., & Mendelsohn, R. (1992). Assessing the economic value of traditional medicines from tropical rain forests. Conservation biology, 6(1), 128-130.
  • Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, cell & environment, 31(1), 11-38.
  • Camejo, D., Jiménez, A., Alarcón, J. J., Torres, W., Gómez, J. M., & Sevilla, F. (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology, 33(2), 177-187.
  • Coghlan, A. (2017). Invasive plants scale warming peaks quickest. New scientist, (3134), 14.
  • Deming, J. W. (2002). Psychrophiles and polar regions. Current opinion in microbiology, 5(3), 301-309.
  • Filewod, B., & Thomas, S. C. (2014). Impacts of a spring heat wave on canopy processes in a northern hardwood forest. Global change biology, 20(2), 360-371.
  • Guo, Y. P., Zhou, H. F., & Zhang, L. C. (2006). Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Scientia Horticulturae, 108(3), 260-267.
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643-9684.
  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in plant science, 14(1), 30-36.
  • Ismail, A. M., & Hall, A. E. (1999). Reproductive‐stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science, 39(6), 1762-1768.
  • Kamboj, J. S., Browning, G., Blake, P. S., Quinlan, J. D., & Baker, D. A. (1999). GC-MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple rootstocks. Plant Growth Regulation, 28, 21-27.
  • Larcher, W. (1995). Photosynthesis as a tool for indicating temperature stress events. Ecophysiology of photosynthesis, 261-277.
  • Levitt, J. (1980). Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses. Academic Press.
  • Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant molecular biology, 48, 667-681.
  • Nava, G. A., Dalmago, G. A., Bergamaschi, H., Paniz, R., dos Santos, R. P., & Marodin, G. A. B. (2009). Effect of high temperatures in the pre-blooming and blooming periods on ovule formation, pollen grains and yield of ‘Granada’peach. Scientia Horticulturae, 122(1), 37-44.
  • Olsen, S. C., & Larsen, O. H. (2003). Alpine medicinal plant trade and Himalayan mountain livelihood strategies. Geographical Journal, 169(3), 243-254.
  • Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (Eds.). (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press. United Kingdom and New York, NY, USA.
  • Potters, G., Pasternak, T. P., Guisez, Y., & Jansen, M. A. (2009). Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, cell & environment, 32(2), 158-169.
  • Potters, G., Pasternak, T. P., Guisez, Y., Palme, K. J., & Jansen, M. A. (2007). Stress-induced morphogenic responses: growing out of trouble?. Trends in plant science, 12(3), 98-105.
  • Ramsay, S. (2002). WHO launches first global strategy on traditional medicines. The Lancet, 359(9319), 1760.
  • Rasheed, R. (2009) Salinity and Extreme Temperature Effects on Sprouting Buds of Sugarcane (Saccharum officinarum L.): Some Histological and Biochemical Studies. Ph. D. thesis, Department of Botany, University of Agriculture, Faisalabad.
  • Ruelland, E., & Zachowski, A. (2010). How plants sense temperature. Environmental and experimental botany, 69(3), 225-232.
  • Salick, J., Fang, Z., & Byg, A. (2009). Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Global Environmental Change, 19(2), 147-155.
  • Singh, N., Nath, R., Lata, A., Singh, S. P., Kohli, R. P., & Bhargava, K. P. (1982). Withania somnifera (ashwagandha), a rejuvenating herbal drug which enhances survival during stress (an adaptogen). International journal of Crude drug research, 20(1), 29-35.
  • Smith, K. T., & Workman, J. L. (2012). Chromatin proteins: key responders to stress. PLOS Biology 10(7): e1001371.
  • Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany, 67(3), 429-443.
  • Todorov, D. T., Karanov, E. N., Smith, A. R., & Hall, M.A. (2003). Chlorophyllase activity and chlorophyll content in wild and mutant plants of Arabidopsis thaliana. Biologia plantarum, 46, 125-127.
  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223.
  • Wise, R. R., Olson, A. J., Schrader, S. M., & Sharkey, T. D. (2004). Electron transport is the functional limitation of photosynthesis in field‐grown Pima cotton plants at high temperature. Plant, Cell & Environment, 27(6), 717-724.
  • Zobayed, S. M. A., Afreen, F., & Kozai, T. (2005). Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort. Plant Physiology and Biochemistry, 43(10-11), 977-984.
  • Źróbek-Sokolnik, A. (2012). Temperature stress and responses of plants. Environmental adaptations and stress tolerance of plants in the era of climate change, 113-134.
Еще
Статья обзорная