Epigenetic effects of enzastaurin - a new aspect in the mechanism of action of an anticancer drug from protein kinase inhibitors

Автор: Maksimova Varvara P., Makus Julia V., Usalka Olga G., Lylova Eugenia S., Bugaeva Polina E., Zhidkova Ekaterina M., Fedorov Dmitry A., Lizogub Olga P., Lesovaya Ekaterina A., Belitsky Gennady A., Yakubovskaya Marianna G., Kirsanov Kirill I.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Лабораторные и экспериментальные исследования

Статья в выпуске: 4 т.19, 2020 года.

Бесплатный доступ

The purpose of the study was to analyze the ability of five antitumor drugs from the pharmaceutical group of protein kinase inhibitors (gefitinib, imatinib, pazopanib, ponatinib and enzastaurin) to reactivate the expression of the epigenetically silenced GFP in HeLa TI cells, and to estimate the effect of epigenetically active drugs on: 1) acetylation and methylation of histones H3 and H4; 2) integral DNA methylation; 3) activity of HAT and HDAC1 enzymes; 4) expression levels of the genes encoding epigenetic regulation enzymes (DNMT1, DNMT3A, DNMT3B; SIRT1, HDAC1; SETD1A, SETD1B, SUV420H1, SUV420H2, SUV39H1, SUV39H2). Material and Methods. The epigenetic activity of antitumor drugs was determined using the HeLa TI test system, a population of HeLa cells with the retroviral vector containing the epigenetically silenced GFP. The level of integral DNA methylation was analyzed using MspI/HpaII methyl-sensitive restriction analysis. Histone modifications were analyzed by Western blotting with antibodies to acetylated and methylated histones H3 and H4. The total activity of HAT enzymes was analyzed using Histone Acetyltransferase Activity Assay Kit. Expression of the epigenetic enzyme genes was analyzed using real-time quantitative RT-PCR. Results. It was shown that only the enzyme inhibitor Cp protein kinase enzastaurin had the ability to reactivate the expression of epigenetically silenced GFP in the HeLa TI cells. We showed that under the action of enzastaurin, the level of integral DNA methylation and expression of DNMT3A and DNMT3B DNA methyltransferase genes decreased. It was also found that enzastaurin reduced the expression levels of histone deacetylases HDAC1 and SIRT1, but did not affect the activity and expression levels of histone acetylases, the level of histone methylation (H3K4me3, H3K9me3, H3K27me3, H4K20me3), and the level of expression of the histone methyltransferases (SUV39H1, SUV39H2, SUV420H1, SUV420H2, SETD1A и SETD1B). Conclusion. The data obtained are important for clarifying the mechanisms of action of 5 protein kinase inhibitors, in particular with respect to enzastaurin, the protein kinase Cp inhibitor, for which the ability to reactivate epigenetically silent genes due to the effect on DNA methylation and histone acetylation was demonstrated.

Еще

Protein kinase inhibitors, enzastaurin, epigenetic activity, hela ti, histone modifications, dna methylation, hat, hdac

Короткий адрес: https://sciup.org/140254368

IDR: 140254368   |   DOI: 10.21294/1814-4861-2020-19-4-67-78

Список литературы Epigenetic effects of enzastaurin - a new aspect in the mechanism of action of an anticancer drug from protein kinase inhibitors

  • Cheng Y, He C., Wang M, Ma X., Mo F., Yang S., Han J., Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019 Dec 17; 4: 62. doi: 10.1038/s41392-019-0095-0.
  • Ravegnini G., Sammarini G., HreliaP., Angelini S. Key Genetic and Epigenetic Mechanisms in Chemical Carcinogenesis. Toxicol Sci. 2015 Nov; 148(1): 2-13. doi: 10.1093/toxsci/kfv165.
  • HanM., JiaL., Lv W., WangL., Cui W. Epigenetic Enzyme Mutations: Role in Tumorigenesis and Molecular Inhibitors. Front Oncol. 2019 Mar 29; 9: 194. doi: 10.3389/fonc.2019.00194.
  • GnyszkaA., Jastrzebski Z., Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013 Aug; 33(8): 2989-96.
  • Li Y., SetoE. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med. 2016 Oct 3; 6(10): a026831. doi: 10.1101/cshperspect.a026831.
  • McClure J.J., LiX., Chou C.J. Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics. Advances in Cancer Research. Academic Press. 2018. 183-211 p.
  • Zagni C., Chiacchio U., Rescifina A. Histone methyltransferase inhibitors: novel epigenetic agents for cancer treatment. Curr Med Chem. 2013; 20(2): 167-85. doi: 10.2174/092986713804806667.
  • ItalianoA., Soria J.C., ToulmondeM., MichotJ.M.,LucchesiC., Varga A., Coindre J.M., Blakemore S.J., ClawsonA., SuttleB., McDonald A.A., Woodruff M., Ribich S., Hedrick E., Keilhack H., Thomson B., Owa T., CopelandR.A., HoP.T.C., Ribrag V. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018 May; 19(5): 649-659. doi: 10.1016/S1470-2045(18)30145-1.
  • VermaN., RaiA.K., Kaushik V., Brünnert D., ChaharK.R., Pandey J., Goyal P. Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Sci Rep. 2016 Sep 22; 6: 33949. doi: 10.1038/ srep33949.
  • Ratovitski E.A. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr Genomics. 2017 Apr; 18(2): 175-205. doi: 10.2174/1389202917666160803165229.
  • Chung F.F., Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. Environ Health Perspect. 2020 Jan; 128(1): 15001. doi: 10.1289/ EHP6104.
  • Katz R.A., Jack-Scott E., Narezkina A., Palagin I., Boimel P., Kulkosky J., Nicolas E., Greger J.G., Skalka A.M. High-frequency epigenetic repression and silencing of retroviruses can be antagonized by histone deacetylase inhibitors and transcriptional activators, but uniform reactivation in cell clones is restricted by additional mechanisms. J Virol. 2007 Mar; 81(6): 2592604. doi: 10.1128/JVI.01643-06.
  • PoleshkoA., Einarson M.B., Shalginskikh N., Zhang R., Adams P.D., Skalka A.M., Katz R.A. Identification of a functional network of human epigenetic silencing factors. J Biol Chem. 2010 Jan 1; 285(1): 422-33. doi: 10.1074/jbc.M109.064667.
  • Shalginskikh N., Poleshko A., Skalka A.M., Katz R.A. Retroviral DNA methylation and epigenetic repression are mediated by the antiviral host protein Daxx. J Virol. 2013 Feb; 87(4): 2137-50. doi: 10.1128/ JVI.02026-12.
  • Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013 Mar; 23(3): 555-67. doi: 10.1101/gr.147942.112.
  • Huang Y., Song H., Hu H., Cui L., You C., Huang L. Trichosanthin inhibits DNA methyltransferase and restores methylation-silenced gene expression in human cervical cancer cells. Mol Med Rep. 2012 Oct; 6(4): 872-8. doi: 10.3892/mmr.2012.994.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16; 65(1-2): 55-63. doi: 10.1016/0022-1759(83)90303-4.
  • Shechter D., Dormann H.L., Allis C.D., Hake S.B. Extraction, purification and analysis of histones. Nat Protoc. 2007; 2(6): 1445-57. doi: 10.1038/nprot.2007.202.
  • Li R., Hebert J.D., Lee T.A., Xing H., Boussommier-Calleja A., HynesR.O., LauffenburgerD.A., Kamm R.D. Macrophage-Secreted TNFa and TGFß1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Cancer Res. 2017 Jan 15; 77(2): 279-290. doi: 10.1158/0008-5472.CAN-16-0442.
  • Bhullar K.S., Lagaron N.O., McGowan E.M., Parmar I., Jha A., Hubbard B.P., Rupasinghe H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018; 17(1): 48. doi: 10.1186/ s12943-018-0804-2.
  • KannaiyanR., MahadevanD. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev Anticancer Ther. 2018 Dec; 18(12): 1249-1270. doi: 10.1080/14737140.2018.1527688.
  • Huang W.S., Metcalf C.A., Sundaramoorthi R., Wang Y., Zou D., Thomas R.M., Zhu X., Cai L., Wen D., Liu S., Romero J., Qi J., Chen I., Banda G., Lentini S.P., Das S., Xu Q., Keats J., Wang F., Wardwell S., Ning Y., Snodgrass J.T., BroudyM.I., RussianK., Zhou T., CommodoreL., Narasimhan N.I., Mohemmad Q.K., Iuliucci J., Rivera V.M., Dal-garno D.C., Sawyer T.K., Clackson T., Shakespeare W.C. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methyl-piperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem. 2010 Jun 24; 53(12): 4701-19. doi: 10.1021/jm100395q.
  • O'Hare T., Shakespeare W.C., Zhu X., Eide C.A., Rivera V.M., Wang F., Adrian L.T., Zhou T., Huang W.S., Xu Q., MetcalfC.A., Tyner J. W., Loriaux M.M., Corbin A.S., Wardwell S., Ning Y., Keats J.A., Wang Y., Sundaramoorthi R., Thomas M., Zhou D., Snodgrass J., Commodore L., Sawyer T.K., Dalgarno D.C., Deininger M.W., Druker B.J., Clackson T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009 Nov 6; 16(5): 401-12. doi: 10.1016/j. ccr.2009.09.028.
  • Nowakowski G.S., Zhu J., Zhang Q., Brody J., Sun X., Maly J., Song Y., Rizvi S., Song Y., LansiganF., JingH., Cao J., Lue J.K., Luo W., Zhang L., Li L., Han I., Sun J., Jivani M., Liu Y., Heineman T., Smith S.D. ENGINE: a Phase III randomized placebo controlled study of enzastaurin/ R-CHOP as frontline therapy in high-risk diffuse large B-cell lymphoma patients with the genomic biomarker DGM1. Future Oncol. 2020 May; 16(15): 991-9. doi: 10.2217/fon-2020-0176.
  • WiltingR.H., Dannenberg J.H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat. 2012; 15(1-2): 21-38. doi: 10.1016/j.drup.2012.01.008.
  • Delcuve G.P., Khan D.H., Davie J.R. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics. 2012 Mar 12; 4(1): 5. doi: 10.1186/1868-7083-4-5.
  • RifaïK., Judes G., IdrissouM., DauresM., Bignon Y.J., Penault-Llorca F., Bernard-Gallon D. SIRT1-dependent epigenetic regulation of H3 and H4 histone acetylation in human breast cancer. Oncotarget. 2018 Jul 17; 9(55): 30661-30678. doi: 10.18632/oncotarget.25771.
  • VolkelP., AngrandP.O. The control of histone lysine methylation in epigenetic regulation. Biochimie. 2007; 89(1): 1-20. doi: 10.1016/j. biochi.2006.07.009.
  • Koch A., Joosten S.C., Feng Z., de Ruijter T.C., Draht M.X., Melotte V., Smits K.M., Veeck J, Herman J.G., Van Neste L., Van Criekinge W., De Meyer T., van Engeland M. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018; 15(7): 459-466. doi: 10.1038/ s41571-018-0004-4.
  • Patnaik S., Anupriya. Drugs Targeting Epigenetic Modifications and Plausible Therapeutic Strategies Against Colorectal Cancer. Front Pharmacol. 2019; 10: 588. doi: 10.3389/fphar.2019.00588.
Еще
Статья научная