Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings

Автор: Abbas salwA. M.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.8, 2012 года.

Бесплатный доступ

Cold temperature damage is a common problem for plant in temperate regions. Physiological responses to low temperature were investigated in sorghum to identify mechanisms of tolerance. Sorghum (Sorghum bicolorL.)seeds were soaked in different concentrations (0, 3, 6 and 12 mg L-1) of sodium selenate for 6 h before sowing, during the germination period seedlings were exposed to 4 °C or 8 °C for 7 days and allowed to recover at 25 °C for 3 days. Selenate at lower concentrations (3 & 6L-1) enhanced the growth and levels of chlorophylls, anthocyanine, sugar, proline, ascorbic acid and enzymatic activities. However, high level of selenate (12 mg L-1) exert toxic effects. The levels of non-enzymatic antioxidants (ascorbic acid and carotenoids) were increased by selenate. Low selenate (3 & 6L-1) diminished lipid peroxidation as measured by malondialdehyde. The activities of enzymatic antioxidants (ascorbic acid peroxidase and guaiacol peroxidase) in sorghum seedlings were enhanced by low level of selenate. The results showed that both enzymatic and non enzymatic antioxidants played significant roles in selenate detoxification.

Еще

Selenium, cold stress, sorghum, physiological changes

Короткий адрес: https://sciup.org/14323594

IDR: 14323594

Список литературы Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings

  • Aghaee, F., Moradi, H., Zare-Maivan, F., Zarinkamar, H., Pour Irandoost and Sharifi P. (2011). Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. Afr. J. of Biotech., 39, 7617-7621
  • Allen, D.J. and Ort, D.R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci., 6, 36-42.
  • Aroca, A. F., Tognoni, J.J, Irigoyen, M., Sanchez-D?az, and Pardossi, A. (2001). Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol. Bioch., 39, 1067-1073.
  • Bates, L.S., Waldern, R.P. and Teare, I.K. (1973). Rapid determination of free proline for water stress studies. Plant Soil 39, 205 -208.
  • Cao, X., Ma, QL and Tu, C. (2004). Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese barke fern (Pteris vittata L.). Environ. Poll., 128, 317-25.
  • Chang, M., Chen, S., Lee and Chen, Y. (2001). Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mung bean (Vigna radiata L.) seedlings. Botany Bull. Acad. Sci., 42, 53-60.
  • Chen, W.P. and Li P.H. (2002). Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells. Plant Cell Environ., 25, 955-962.
  • Chinnusamy, V., Zhu, J.H. and Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci., 12, 444-451.
  • Chu, X., Yao, Z. and Zhang (2010). Responses of wheat seedlings to exogenous selenium supply under cold stress. BioI. Trace Elem. Res., 136, 355-363.
  • Djanaguiraman, M., Devi, A.K., Shanker, A., Sheeba and Bangarusamy, U. (2005). Selenium-an antioxidative protectant in soybean during senescence. Plant Soil 272, 77 -86.
  • Egert, M. and Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ. Exp. Bot., 48, 43-49.
  • Filek, M., Keskinen, R., Hartikainen, H., Szarejko, A., Janiak, Z. and Miszalski, Golda, A. (2008). The protective role of selenium in rape seedlings subjected to cadmium stress. J. of Plant Physiol., 165, 833-844.
  • Foyer, C.H. and Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic Interface between stress perception and physiological responses. Plant Cell 17, 1866-1875.
  • Foyer, C.H. and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox stat. Plant Physiol., 155, 2-18.
  • Ghars, M.A., Parre, E., Debez, A., Bordenave, M., Richard, L., Leport, L., Bouchereau, A., Savoure, A. and Abdelly, C. (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J. of Plant Physiol., 165, 588-599.
  • Hartikainen, H., Xue, T. and Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil 225, 193-200.
  • Hatier, J.H.B. and Gould, K.S. (2008). Foliar anthocyanins as modulators of stress signals. J. of Theoretical Biol., 253, 625-627.
  • Hawrylak, Nowak, B., Matraszek, R.and Szymanska, M. (2010). Selenium modifies the effect of short-term chilling stress on cucumber plants. BioI. Trace Elem. Res., 10.1007/s12011-010-8613-5.
  • Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts, Archief Biochem. Biophys., 125, 189-198.
  • Homme, P.M., Gonzalez, B. and Billard, J. (1992). Carbohydrate content, frutane and sucrose enzyme activities in roots, stubble and leaves of rye grass (Lolium perenne L.) as affected by sources/link modification after cutting. J. of Plant Physiol., 140, 282-291.
  • Hong, Cao, C.h., Sun, H., Shao and Xin-Tao Lei (2011). Effects of low temperature and drought on the physiological and growth changes in oil palm seedlings. Afr. J. of Biotech., 14, 2630-2637.
  • Huang, M. and Guo, Z. (2005). Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plantarum, 49, 81-84.
  • Kong, L. and Wang, Bi. D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Reg., 45, 155-163.
  • Krizek, D.T., Kramer, G.F., Upadhyaya, A. and Mirecki, R. (1993). UV-B Response of cucumber seedling grown under metal halid and high pressure sodium/deluxe lamps. Physiol. of Plant, 88, 350-358.
  • Leipner, J., Fracheboud, P. and Stamp, (1999). Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance, Environ. Exp. Bot., 42, 129-139.
  • Liang, L.H., Mei, X., Lin, F., Xia, J., Liu, S.J. and Wang, J.H. (2009). Effect of low temperature stress on tissue structure and physiological index of cashew young leaves. Ecol. Environ. Sci., 18, 317-320.
  • Lyons, G.H., Genc, Y., Soole, K., Stangoulis, J.C., Liu, F. and Graham, R.D. (2009). Selenium increases seed production in Brassica. Plant and Soil, 318, 73-80.
  • Margesin, R., Neuner, G. and Storey, K.B. (2007). Cold-loving microbes, plants, and animals -fundamental and applied aspects. Naturwissenschaften 94, 77-99.
  • Metzner, H., Rau, H. and Senger, H. (1965). Untersuchungen zur Synchronnisierbarkeit einzelner Pigmentmangel Mutanten von Cholrella Planta 65, 196.
  • Mukherjee, S.P.and Choudhuri, M. A. (1983). implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiol., 58, 166 -170.
  • Nakano, Y.and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867-880.
  • Olga, B., Eija, V. and Kurt, F. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. of Bot., 91, 179-194.
  • Padmaja, K., Somasekharaiah, B.V.and Prasad, A.R. (1995). Inhibition of chlorophyll synthesis by selenium: involvement of lipoxygenase mediated lipid peroxidation and antioxidant enzymes. Photosyn., 31, 1-7.
  • Pearce, R.S. (2001). Plant freezing and damage. Ann. Bot., 87, 417-424.
  • Peng, X.L., Liu, Y.Y. and Luo, S. (2002). Effects of selenium on lipid peroxidation and oxidizing ability of rice roots under ferrous stress. J. Northeast Agric. Univ., 19, 9-15.
  • Pennanen, A., Xue, T. and Hartikainen, H. (2002). Protective role of selenium in plant subjected to severe UV irradiation stress. J. App. Bot., 76, 66-76.
  • Polle, A., Otter, T. and Siefert, F. (1994). Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol., 106, 53-60.
  • Rios, J.J., Blasco, B., Cervilla, L.M., Rosales, M.A., Sanchez-Rodriguez, E., Romero, L. and Ruiz, J.M. (2009). Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann.of App. Biol. 154, 107-116.
  • Ruth, G. (2002). Oxidative stress and acclimation mechanisms in plants. The Arabidopisis Book 1~20.
  • Ruth, G. A., Neval, E. and Lenwood, S.H. (2004). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. of Exp. Bot., 372, 1331-1341.
  • Sandalio, L.M., Dalurzo, M., Gomez, M.C., Romero-Puertas and del Rio L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. of Exp. Bot., 52, 2115-26.
  • Sato, Y., Masuta Y., Saito K., Murayama, S. and Ozawa, K. (2011). Enhanced chilling tolerance at the booting stage in rice by transgenic over expression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep.,30, 399-406.
  • Shardendu, S. N., Boulyga, S.F. and Stengel, E. (2003). Phytoremediation of selenium by two halophyte species in subsurface flow constructed wetland. Chemosphere 50, 967-973.
  • Sharifi, P. (2010). Evaluation on Sixty-eight Rice Germplasms in Cold Tolerance at Germination Stage. Rice Sci., 1, 77-81.
  • Shibagaki, N., Rose, A.,McDermott, J.P., Fujiwara, T., Hayashi, H., Yoneyama, T. and Davies, J.P. (2002). Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 29, 475-486.
  • Smirnoff, N., Conklin, L. and Loewus, F.A. (2001). Biosynthesis of ascorbic acid is plants: a renaissance. Ann Rev Plant Physiol. Plant Mol. Biol., 52, 437-67.
  • Stanislawa, P., Ewelina, R. and Ewa, K. (2011). The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. J. of plant physiol., 168, 220-225.
  • Seppanen, M. Turakainen, M. Hartikainen H.(2003). Selenium effects on oxidative stress in potato. Plant Science., 165, 311-319.
  • Strand, A., Foyer, C.H., Gustafsson, P., Gardestrom, P. and Hurry, V. (2003). Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ., 26, 523-535.
  • Sun, X., Hu, Q. and Tan, L. (2006). Effects of molybdenum on antioxidative defense system and membrane lipid peroxidation in winter wheat under low temperature stress. Journal Plant Physiol. Mol. Biol., 2, 175-182.
  • Szalontai, B., Kota, Z., Nonaka, H. and Murata, N. (2003). Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochem., 42, 4292-4299.
  • Terry, N., Zayed, M.P., de Souza and Tarun, A.S.(2000). Selenium in higher plants. Annual Rev. Physiol. Plant Mol. Biol., 51, 401-432.
  • Turakainen, M. (2007). Selenium and its Effects on Grovvth, Yield and Tuber Quality in Potato. University of Helsinki Helsinki pp, 50-55.
  • Vikhreva, V.A., Balakhnina, T.I. and Gins, V.K.(2002). Effect of selenium on intensity of peroxide processes and enzyme activity in Caucasian goat's rue leaves under extreme growing condition. Russ. Agric. Sci., 2, 1-4.
  • Wu, J.H., Yang, L. and Sun, G.R. (2004). Generation of activated oxygen and change of cell defense enzyme activity in leaves of maize seeding under the stress of low temperature. Bull. of Bota. Res., 4, 456-459.
  • Wu, X., Zhu, L. and Zhu, W.M. (2006). Physiological effects of exogenous nitric oxide in tomato seedlings under NaCl stress. Sci. Agric. Sinica 3, 575-581.
  • Xiao, B.Z., Chen, X., Xiang, C.B., Tang, N., Zhang, Q.F. and Xiong, L.Z.(2009). Evaluation of seven function-known candidate genes for heir effects on improving drought resistance of transgenic rice under field conditions. Molecular Plant 2, 73-83.
  • Xiong, L. and Zhu, J. K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environ., 25, 131-139.
  • Xue, T., Hartikainen, H. and Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant Soil 27, 55-61.
  • Ya, L., Haoru, T.and Yong, Z. (2011). Production of Reactive Oxygen Species and Antioxidant Metabolism about Strawberry Leaves to Low Temperatures. J. of Agric. Sci., 3(2), 89-96.
  • Yan, W.W., Zhang, L., Chen, G., Fan, J.G., Cui, W.S. and Guo, Z.F.(2010). Comparative study for cold acclimation physiological indicators of Forsythia mandshurica Uyeki and Forsythia viridissima Ind Middle-East J. Sci. Res. 6, 556-562.
  • Yemm, E.W. and Willis, A.J. (1994). The respiration of barley plants. IX. The metabolism of roots during assimilation of nitrogen. New Phyto., 55, 229-234.
  • Zhang, S., Jiang, H., Peng, S. and Korpelainen, H.C. (2010). Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J.of Exp. Bot., 1-12.
  • Zhou, B.Y., L.i, J.Z., Chen, Z.L.and Hu, Z.Q. (2002). Effects of low temperature stress and ABA on flower formation and endogenous hormone of litchi. Acta Horti. Sinica, 29, 577-578.
  • Zhou, B., Guo, Z. and Liu, Z. (2005). Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis under chilling stress. Crop Sci., 45, 599-605.
Еще
Статья научная