Effect of NaCl on chlorophyll fluorescence and thylakoid membrane proteins in leaves of salt sensitive and tolerant rice (Oryza sativa L) varieties

Автор: Smita Srivastava, P.K. Sharma

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.17, 2021 года.

Бесплатный доступ

In this study we compare a few physiological parameters of a salt sensitive (Jaya) and salt resistant (Korgut) rice varieties to understand mechanism of salt tolerance. Jaya, high yielding salt-sensitive rice (Oryza sativa) variety, and Korgut, a 100% salt-tolerant rice variety, were grown for 15 days in vermiculite irrigated with NaCl solutions of 0 – 200 mmolL-1 prepared in Hoagland’s solution (pH 6.5). It was observed that initial fluorescence (F0) value increased, and the maximal fluorescence ratio (Fm) decreased in Jaya; however, the Korgut variety maintains the F0 and Fm value without much significant variation as NaCl increased. On the other hand, Actual efficiency (ΦPSII) significantly decreased in Jaya showed slightly decreased at 200 mmolL-1 NaCl treatment. The polypeptide composition of the thylakoid membrane decreases after NaCl treatment in the Jaya variety, but it's maintained in the Korgut variety. Photo-inactivation of PSII in Jaya includes the loss of the D1 and D2, (32-34 kDa) protein, probably from greater photosynthetic damage caused by salinity stress; Korgut is not showing alternation of the same protein, and it's maintained the greater photosynthetic. In Jaya, most prominently, the dramatic decline of the 47-kDa chlorophyll protein (CP), 17-kDa (F0), and (10kDa) OEC protein vice versa in Korgut. The decreased in 47-kDa, and 23kDa proteins in Jaya lead to the decreased energy transfer from the light-harvesting antenna to PSII due to the marked alterations in the composition of thylakoid membrane proteins. The most important of changes in Korgut indicate maintained chlorophyll fluoresces without altering the thylakoid membrane protein towards adaptation to salinity. These findings can be translated into efforts to develop more salt-tolerant cultivars and exhaust the possibilities of using saline soils.

Еще

Chlorophyll fluorescence, rice, salt stress, thylakoid membrane proteins

Короткий адрес: https://sciup.org/143173887

IDR: 143173887

Список литературы Effect of NaCl on chlorophyll fluorescence and thylakoid membrane proteins in leaves of salt sensitive and tolerant rice (Oryza sativa L) varieties

  • Ball, M. C., Mehlhorn, R. J., Terry, N., & Packer, L. (1985). Electronic spin resonance studies of ionic permeability properties of thylakoid membranes of Beta vulgaris and Avicennia germinans. Plant Physiology, 78(1), 1–3. doi:10.1104/pp.78.1.1
  • Berthold, D. A., Babcock, G. T., & Yocum, C. F. (1981). A highly resolved, oxygen-evolving photosystem 2 preparation from spinach thylakoid membranes: EPR and electron-transport properties. FEBS Letters, 134(2), 231–234. doi:10.1016/0014-5793(81)80608-4
  • Bossmann, B., Knoetzel, J., & Jansson, S. (1997). Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PS I and PS II: absence of specific antenna proteins. Photosynthesis Research, 52(2), 127-136.
  • Calatayud, A., Pomares, F., & Barreno, E. (2006). Interactions between nitrogen fertilization and ozone in watermelon cultivar Reina de Corazones in open-top chambers. Effects on chlorophyll a fluorescence, lipid peroxidation, and yield. Photosynthetica, 44(1), 93-101.
  • Coombs, J., Hall, D. O., & Long, S. P. (1985). Techniques in bioproductivity and photosynthesis (pp. 136–137).
  • Diao, F. Q., Zhang, W. H., & Liu, Y. L. (1997). Changes in composition and function of thylakoid membrane isolated from barley seedling leaves under salt stress. Acta Phytophysiol., 23, 105–110.
  • Dionisio-Sese, M. L., & Tobita, S. (2000). Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology, 157(1), 54–58. doi:10.1016/S0176-1617(00)80135-2
  • Flood, P. J., Harbinson, J., & Aarts, M. G. M. (2011). Natural genetic variation in plant photosynthesis. Trends in Plant Science, 16(6), 327–335. doi:10.1016/j.tplants.2011.02.005
  • Garg, B., Puranik, S., Misra, S., Tripathi, B. N., & Prasad, M. (2013). Transcript profiling identifies novel transcripts with unknown functions as primary response components to osmotic stress in wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture, 113(1), 91–101. doi:10.1007/s11240-012-0254-2
  • Ghabooli, M., Khatabi, B., Ahmadi, F. S., Sepehri, M., Mirzaei, M., Amirkhani, A., . . . Salekdeh, G. H. (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteome, 4, 289–301
  • Hassanein, A. M. (1999). Alterations in protein and esterase patterns of peanut in response to salinity stress. Biologia Plantarum, 42(2), 241–248. doi:10.1023/A:1002112702771
  • Heinz, S., Liauw, P., Nickelsen, J., & Nowaczyk, M. (2016). Analysis of photosystem II biogenesis in cyanobacteria. Biochimica Et Biophysica Acta (BBA)-Bioenergetics, 1857(3), 274-287.
  • Hippler, M., Klein, J., Fink, A., Allinger, T., & Hoerth, P. (2001). Towards functional proteomics of membrane protein complexes: Analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant Journal, 28(5), 595–606. doi:10.1046/j.1365-313X.2001.01175.x
  • In, Y. Y. (1995). Photosynthesis: From light to biosphere Effects of high temperatures on photosynthetic systems in higher plants. 1. In P. Mathis (Ed.), Causes of the increase in the fluorescence Fo level (pp. 849–852). Dordrecht: Springer.
  • Jiang, F., Chen, L., Belimov, A. A., Shaposhnikov, A. I., Gong, F., Meng, X. (2012). Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. Journal of Experimental Botany, 63(18), 6421–6430. doi:10.1093/jxb/ers301
  • Lopez, F., Vansuyt, G., Fourcroy, P., & Casse-Delbart, F. (1994). Accumulation of a 22-kDa protein in the leaves of Raphanus sativus in response to salt stress or water deficit. Physiologia Plantarum, 91, 605–614
  • Lu, C., Qiu, N., Lu, Q., Wang, B., & Kuang, T. (2002). Does salt stress lead to increased susceptibility of photosystem II to photo inhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors. Plant Science, 163(5), 1063–1068. doi:10.1016/S0168-9452(02)00281-9
  • Lu, C., Qiu, N., Wang, B., & Zhang, J. (2003). Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. Journal of Experimental Botany, 54(383), 851–860. doi:10.1093/jxb/erg080
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaClinduced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389–398. doi:10.1006/anbo.1996.0134
  • Misra, A. N., Sahu, S. M., Misra, M., Singh, P., Meera, I., Das, N., . . . Sahu, P. (1997). Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biologia Plantarum, 39(2), 257–262. doi:10.1023/A:1000357323205
  • Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROSscavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161–1173. doi:10.1093/aob/mcm052
  • Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of experimental botany, 64(13), 3983-3998.
  • Nishida, I., & Murata, N. (1996). Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annual review of plant biology, 47(1), 541-568.
  • Parida, A. K., Das, A. B., & Mohanty, P. (2004). Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation, 42(3), 213–226. doi:10.1023/B:GROW.0000026508.63288.39
  • Roháček, K., Soukupová, J., & Barták, M. (2008). Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. Plant Cell Compartments-Selected Topics. Research Signpost, Kerala, India, 41-104.
  • Sarkar, R. K., Mahata, K. R., & Singh, D. P. (2013). Differential responses of antioxidant system and photosynthetic characteristics in four rice cultivars differing in sensitivity to sodium chloride stress. Acta Physiologiae Plantarum, 35(10), 2915–2926. doi:10.1007/s11738-013-1322-x
  • Shahbaz, M., Ashraf, M., Akram, N. A., Hanif, A., Hameed, S., Joham, S., & Rehman, R. (2011). Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum, 33(4), 1113-1122.
  • Sharma, P. K., & Singhal, G. S. (1992). Influence of photoinhibition on photosynthesis and lipid peroxidation. Journal of Photochemistry and Photobiology B: Biology, 13(1), 83-94.
  • Singh, A. K., & Dubey, R. S. (1995). Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynthetica, 31, 489–499.
  • Sivritepe, N., & Eris, A. (1999). Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology, 23, 473–485.
  • Spence, A. K., Boddu, J., Wang, D., James, B., Swaminathan, K., Moose, S. P., & Long, S. P. (2014). Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus giganteus. Journal of Experimental Botany, 65(13), 3737–3747. doi:10.1093/jxb/eru209
  • Tamas, L., Huttova, J., & Mistrik, I. (2001). NaCl and growth retardant tetcyclacis on growth and protein composition of maize roots. Impact of aluminium. Biologia, 56, 441–448.
  • Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. Genome biology, 14(6), 1-10.
  • Wang, W. X., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1–14. doi:10.1007/s00425-003-1105-5
  • Wood, K. V., & Klaubert, D. H. (2005). Analytical biotechnology. Current Opinion in Biotechnology, 16(1), 1–2. doi:10.1016/j.copbio.2005.01.004
  • Wu, D., Shen, Q., Qiu, L., Han, Y., Ye, L., Jabeen, Z., . . . Zhang, G. (2014). Identification of proteins associated with ion homeostasis and salt tolerance in barley. PROTEOMICS, 14(11), 1381–1392. doi:10.1002/pmic.201300221
  • Yamane, K., Kawasaki, M., Taniguchi, M., & Miyake, H. (2008). Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. Plant Production Science, 11(1), 139–145. doi:10.1626/pps.11.139
  • Yamane, K., Rahman, S., Kawasaki, M., Taniguchi, M., & Miyake, H. (2004). Pretreatment with antioxidants decreases the effects of salt stress on chloroplast ultrastructure in rice leaf segments (Oryza sativa L.). Plant Production Science, 7(3), 292–300. doi:10.1626/pps.7.292
  • Yamane, Y., Kashino, Y., Koike, H., & Satoh, K. (1997). Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynthesis Research, 52(1), 57–64. doi:10.1023/A:1005884717655
Еще
Статья научная