Determining properties of a flow-through supercavitation desalination plant

Автор: Radzyuk Alexsandr Yu., Istyagina Elena B., Kulagina Ludmila V., Li Feng-Chen, Pjanykh Tatiana A., Grishaev Dmitry A., Cai Wei-Hua

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Рубрика: Исследования. Проектирование. Опыт эксплуатации

Статья в выпуске: 1 т.16, 2023 года.

Бесплатный доступ

Nowadays humanity faces an increasing problem of fresh water, the resource of which is rapidly declining because of anthropogenic activity. In this regard, the development of methods and means of purification of natural waters from various impurities, both solid and gaseous, becomes a priority. Steam extraction from the supercavitation cavity for its subsequent condensation is an obvious method of water desalination and has a number of undeniable advantages. However, numerous attempts to implement a method of cavitation desalination of water using large-scale setups have not been successful yet. The purpose of this study is to obtain experimental dependence between the temperature and flow velocity of the desalinated liquid, the pressure in the cavity and its size, the geometry of the streamlined body and the volume of steam taken from the cavity in the prototype of a supercavitation desalination plant. Analyzing obtained data made it possible to show a sharp difference between gas and steam cavitation, the performance of the experimental setup in the desalination mode has been determined. It was concluded that the steam velocity in the condensate extraction pipeline is a factor limiting the condensate output. Based on the data obtained, specific design criteria for industrial supercavitation desalination plants were determined.

Еще

Supercavitation desalination plant, cavity hydrodynamics, cavitation experimental setup, degree of steam dryness

Короткий адрес: https://sciup.org/146282568

IDR: 146282568

Список литературы Determining properties of a flow-through supercavitation desalination plant

  • Kulagin V. A., Ivchenko O. A., Kulagina L. V. Current trends of membrane technology development [J], J. Sib. Fed. Univ. Eng. technol. 10(1) (2017) 24-35. DOI: 10.17516/1999-494X-2017-10-1-24-35 (in Russian).
  • Likhachev D. S., Li F. C., Large-scale water desalination methods: a review and new perspectives [J], Desalin. Water Treat. 51 (13-15) (2013) 2836-2849.
  • Ivchenko V. M., Kulagin V. A. and Nemchin A. F., Cavitation Technology, Ed. by G. V. Logvinovich [M], Izd. KGU, Krasnoyarsk (1990). 200 p. (in Russian).
  • Demidenko N. D., Kulagin V. A. and Shokin Yu. I. Modeling and Calculating the Technology of Distributed Systems [M], (Nauka, Novosibirsk, 2012) (in Russian).
  • [5]. Demidenko N. D, Kulagin V. A., Shokin Yu. I. and Li F. Ch. Heat-Mass Exchange and Supercavitation [M], (Nauka, Novosibirsk, 2015) (in Russian).
  • Likhachev D. S., Li F. C., Kulagin V. A. Experimental study of thermohydrodynamic characteristics of a rotational supercavitating evaporator for desalination [J], Science China Technological Sciences. 2014. Vol. 57. № 11. 2115-2130. DOI: 10.1007/s11431-014-5631-0.
  • Kulagin V. A., Sapoghnikova E. S., Stebeleva O. P., Kashkina L. V., Zhi-Ying Zheng, Qian Li, Feng-Chen Li, Features of influence of cavitation effects on the physicochemical properties of water and wastewater [J], J. Sib. Fed. Univ. Eng. technol. 2014, 7(5). 605-614.
  • Kulagin V. A., Pyanikh T. A. Evolution of Supercavitation Evaporator Taking into Account the Thermodynamic Effects [J], Chemical and Petroleum engineering. 2013, vol. 49, № 3-4, 127-130.
  • Zheng Z.-Y, Li Q, Wang L, Yao L-M, Cai W-H, Kulagin V A, Li H and Li F.-C (2019) Numerical study on the effect of steam extraction on hydrodynamic characteristics of rotational supercavitating evaporator for desalination [J], Desalination 455, 1-18; doi.org/10.1016/j.desal.2018.12.012.
  • Machinski A. S. Hydrodynamics and Thermal Transfer Characteristics of Supercavitating Evaporators for Water Desalination [D], Russian State Library, Moscow, 1984, 1-285 (PhD Thesis) (in Russian).
  • Zheng Z. Y., Li F. C., Li Q. Numerical study on the characteristics of natural supercavitation by planar symmetric wedge-shaped cavitators for rotational supercavitating evaporator [J], Science China Technol. Sci. 58(6) (2015) 1072-1083.
  • Likhachev D. S. Study on the Hydrodynamic Characteristics of Rotational Supercavitating Evaporator [D], Harbin Institute of Technology, Harbin, 2013 (PhD thesis).
  • P'yanykh T. A. Improving the efficiency of supercavitation evaporators [D], Krasnoyarsk Sib. Feder. Un-t, 2013 (PhD thesis) (in Russian).
  • Zheng Zhiying, Li Qian, Li Feng-Chen, Kulagin V A, Numerical study on parameter selection for steam extraction of rotational supercavitating evaporator [J], Journal of University of Chinese Academy of Sciences, 2016, 33(2): 247-252. Doi: 10.7523/j.issn.2095-6134.2016.02.016 (in Chinese).
  • Kulagin V. A., P'yanykh T. A. Modeling of processes in supercavitation evaporator with consideration of thermodynamic effects [J], Chemical and Petroleum Engineering. 50 (1-2) (2014) 24-29.
  • Kulagin V. A., Vil'chenko A.P., Kulagina T. A. Modeling of two-phase supercavitation flows [M]; Ed. V. I. Bykov, CPI KSTU Publ., Krasnoyarsk (2001) 187 p. (in Russian).
  • Kulagin V. A. Numerical study supercavitating of the pump [J], J. Sib. Fed. Univ. Eng. Technol. 2015 8(5). 317-323; DOI: 10.17516/1999-494X-2015-8-5-669-674;
  • Kulagin V. A. Methods and means of technological processing of multicomponent media using cavitation effects [D]. Diss. ... Dr. tech. sciences. KSTU Krasnoyarsk, (2004) 406 p. (in Russian).
  • Kulagina L. V., Yenutina T. and Kirillova I. Increasing the energy efficiency and environmental safety of the operation of small-volume furnaces by adding a water-fuel mixture and organic components [J], E 3S Web of Conferences 295, 02002 (2021), (WFSDI 2021); doi.org/10.1051/ e3sconf/202129502002.
  • Kulagina L. V. Parametric description of the phenomena of boiling and cavitation [J], J. Sib. Fed. Univ. Eng. technol. 2018.11(5). 578-583. DOI: 10.17516/1999-494X-0056 (in Russian).
  • Dzhundubaev A. K., Sultanaliev M. S., Murko V. I., Kulagina L. V., Baranova M. P. Flow regimes of fuel water-coal suspensions in the channels of spraying devices [J], J. Sib. Fed. Univ. Eng. technol. 2018, 11(2), 242-249. DOI: 10.17516/1999-494X-0027 (in Russian).
  • Yu-Ke Li, Zhi-Ying Zheng, Feng-Chen Li, Kulagina L. V. Numerical study on secondary flows of viscoelastic fluids in straight ducts: Origin analysis and parametric effects [J], Computers and Fluids. 152 (2017) 57-73, doi: 10.1016/j.compfluid.2017.04.016;
  • Kulagin V. A., Kulagina L. V., Li Feng-Chen. Solution of the problem of flow past a wing profile near the interface [J], J. Sib. Fed. Univ. Eng. technol. 2017, 10(4), 523-533. DOI: 10.17516/1999-494X-2017-10-4-523-533.
  • Kashkina L. V., Kulagin V. A., Stebeleva O. P., Kulagina L. V. Recycling carbonaceous materials by cavitation nanotechnology techniques [J], J. Sib. Fed. Univ. Eng. technol. 2011. 4(5) 358-372 (in Russian).
  • Kulagin V. A., Kashkina L. V., Stebeleva O. P., Kulagina L. V. Preparation of carbon-containing nanostructures by cavitation technology [J], Chemical and Petroleum Engineering, March 2011, Vol. 46, Issue 11, 767-773. Doi: 10.1007/s 10556-011-9415-0.
  • Kulagina L. V., Lishachev D. S. Method of solving problems of flow past a cascade of supercavitating blades in hydrodynamic reactors [J], Chemical and Petroleum engineering. 2009. Vol. 45. № 9. 603-608. Doi: 10.1007/s 10556-010-9245-5.
  • Kulagin V. A. Kulagina L. V., Kulagina T. A. Nanotechnology cavitational effects in the heat-and-power engineering and other branches of production [J], J. Sib. Fed. Univ. Eng. technol. 2008. 1(1). 76-85.
  • Dubrovskaya O. G., Evstigneev V. V., Kulagin V. A. Problems of biofouling in circulating systems of closed cycles of water use and ways to solve them [J], Safety of life, 2012, No. 3, 26-30 (in Russian).;
  • Dubrovskaya O. G., Evstigneev V. V., Kulagin V. A. Waste water conditioning of energy systems and complexes [J], J. Sib. Fed. Univ. Eng. technol. 4(6) (2011), 629-641 (in Russian).
  • Dubrovskaya O. G., Kulagin V. A., Sapozhnikova E. S. Modern layouts of technological schemes for wastewater treatment using cavitation technology [J], J. Sib. Fed. Univ. Eng. technol. (2015), 8(2), 217-223. (in Russian).
  • Dubrovskaya O. G., Andrunyak I. V., Priymak L. V. Resource-saving technologies for neutralization and utilization of waste from enterprises of the heat and power complex of the Krasnoyarsk Territory [M], Krasnoyarsk: Sib. Feder. un-t, 2014, 164 p. (in Russian).
  • Evstigneev V. V., Kulagin V. A. Cavitation in wastewater treatment technologies [J], In the world of scientific discoveries, 2010, No. 5-1, 87-90 (in Russian).
  • Kurilina T. A., Dubrovskaya O. G., Kulagin V. A., Matyushenko A. I., Bobrik A. G. The prospects of utilizing the modified sorption material to intensify purification of waste water from electroplating production [J], J. Sib. Fed. Univ. Eng. technol. 12(2) (2019) 182-191. DOI: 10.17516/1999-494X-0127 (in Russian).
  • Dubrovskaya O. G., Kulagin V. A. Non-reagent cleaning of industrial wastewater, containing heavy metals based on technology of hydrothermodynamic cavitation [J], J. Sib. Fed. Univ. Eng. technol. 12(4) (2019) 460-467. DOI: 10.100-10417516/1999-494X-0153 (in Russian).
  • Dubrovskaya O. G., Kulagin V. A., Limin Yao. The alternative method of conditioning industrial wastewater containing heavy metals based on the hydrothermodynamic cavitation technology [J], J. Sib. Fed. Univ. Eng. & Technol., 2020, 13(8), 991-1001. DOI: 10.17516/1999-494X-0280.
  • [36]. Kulagin V.A, Dubrovskaya O. G., Gudkov D.N, Matyushenko A. I. The Technology of Obtaining Modified Sorbents Based on Silicate Production Waste, 2019 [J], IOP Conf. Ser.: Earth Environ. Sci. 288 012013
  • Dubrovskaya O. G., Kulagin V. A., Kurilina T. A. Intensification of biological wastewater treatment processes of the food complex companies on the basis of hydro-thermodynamic cavitation [J], J. Sib. Fed. Univ. Eng. technol, 2018, 11(5), 584-590. DOI: 10.17516/1999-494X-0057.
  • [38]. Kulagin V. A., Moskvichev V. V., Makhutov N. A., Markovich D. M., Shokin Yu. I. Physical and Mathematical Modeling in the Field of High-Velocity Hydrodynamics in the Experimental Base of the Krasnoyarsk Hydroelectric Plant [J], Herald of the Russian Academy of Sciences, 2016, Vol. 86, No. 6, 454-465. DOI: 10.1134/S 1019331616060034.
  • Radzyuk A. Yu., Kulagin V. A., Istyagina E. B., Pianykh T. A. Modernization of the cavitation stand for the investigation of two-phase flow regimes [J], J. Sib. Fed. Univ. Eng. technol. 12(4) (2019) 468-475. DOI: 10.17516/1999-494X-0155.
  • Kulagin V. A., Radzyuk A. U., Istyagina E. B. and Pianykh T. A. Experimental stand for the study of cavitation flow regimes [J], IOP Conf. Series: Materials Science and Engineering 450 (2018) 032023; doi:10.1088/1757-899X/450/3/032023.
  • Radzyuk A Yu, Kulagin V A, Istyagina E B, Pyanykh T A and Kolosov M V Numerical simulation of supercavitation in the constrained flow [J], IOP Conference Series: Earth and Environmental Science (EES) 315 (2019) 032027; doi: 10.1088/1755-1315/315/3/032027.
  • Radzyuk A. Yu., Kulagin V. A., Istyagina E. B., Pyanykh T. A. and Grishina I. I. The determination of the dependence of the cavern length on the flow velocity on an experimental hydrodynamic workbench [J], Journal of Physics: Conf. Ser.: 1399 (2019) 022050: doi:10.1088/1742-6596/1399/2/022050.
  • Radzyuk A. Yu., Kulagin V. A., Istyagina E. B., Pianykh T. A. and Kolosov M. V. Determination of the flow regime using the experimental hydrodynamic stand [J], IOP Conf. Series: Materials Science and Engineering 537 (2019) 042080; doi:10.1088/1757-899X/537/4/042080.
  • Viter V. K. and Kulagin V. A. Large-Scale Gravitational Hydrodynamic Tunnels [M], (IPTs KGTU, Krasnoyarsk, 2006) (in Russian).
  • Radzyuk A. Yu., Istyagina E. B., Kulagina L. V., Zhuikov A. V., Grishaev D. A. Synthesis-analysis of the use of cavitation technologies [J], J. Sib. Fed. Univ. Eng. & Technol. 2022, 15(7). 774-801. DOI: 10.17516/1999-494X 0435] (in Russian).
  • Rajkumar R., Gaurav K., Karn A., Kumar V., Shukla H. (2023). Numerical Investigation of the Effect of Liquid Temperature on Supercavitation [J], In: Narendranth, S., Mukunda, P.G., Saha, U.K. (eds) Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1388-4_2.
Еще
Статья научная