Detectors of high-frequency gravitational waves based on the gravitational-optical resonance

Бесплатный доступ

In this paper, we consider the possibility of registering relic gravitational waves predicted in cosmological models of the early universe with an additional stage of stiff energy dominance. Differences in the spectrum of relic gravitational waves in these models from the case of standard inflationary models are considered. A method for detecting high-frequency gravitational waves based on gravitational-optical resonance in Fabry-Perot interferometers is proposed. The main parameters of the detector are calculated and the frequency range of relic gravitational waves, which can be registered using the proposed approach, is determined.

Еще

Scalar fields, cosmological perturbations, modified gravity theories

Короткий адрес: https://sciup.org/142238132

IDR: 142238132   |   DOI: 10.17238/issn2226-8812.2022.4.49-61

Список литературы Detectors of high-frequency gravitational waves based on the gravitational-optical resonance

  • Abbott B.P. et al. [LIGO Scientific and Virgo Collaborations]. Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 2016, vol. 116, p. 061102.
  • Abbott B.P. et al. [LIGO Scientific and Virgo Collaborations]. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett., 2016, vol. 116, p. 241103.
  • Abbott B.P. et al. [LIGO Scientific and Virgo and Fermi-GBM and INTEGRAL Collaborations]. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 2017, vol. 848, L13.
  • Gertsenshtein M.E. and Pustovoit V.I. On the Detection of Low Frequency Gravitational Waves, Sov. Phys. JETP, 1962, vol. 16, p. 433.
  • Audley H. et al. (LISA Collaboration), Laser Interferometer Space Antenna, arXiv:1702.00786.
  • Aggarwal N., Aguiar O.D., Bauswein A., Cella G., Clesse S., Cruise A.M., Domcke V., Figueroa D.G., Geraci A. and Goryachev M. et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies, Living Rev. Rel. 2021, vol. 24, no. 1, p. 4.
  • Baumann D., McAllister L. Inflation and String Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2015). https://doi.org/10.1017/CBO9781316105733
  • Chervon S., Fomin I., Yurov V., Yurov A. Scalar Field Cosmology, Series on the Foundations of Natural Science and Technology, Volume 13 (WSP, Singapur, 2019). https://doi.org/10.1142/11405
  • Maggiore M. Gravitational wave experiments and early universe cosmology, Phys. Rept. 2000, vol. 331, p. 283.
  • Aghanim N. et al. [Planck], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 2020, vol. 641, A6. [erratum: Astron. Astrophys. 2021, vol. 652, C4].
  • Boyle L.A. and Buonanno A. Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: Implications for the early Universe, Phys. Rev. D. 2008, vol. 78, p. 043531.
  • Giovannini M. Primordial backgrounds of relic gravitons, Prog. Part. Nucl. Phys. 2020, vol. 112, p. 103774.
  • Figueroa D.G. and Tanin E.H. Ability of LIGO and LISA to probe the equation of state of the early Universe, JCAP. 2019, vol. 08, p. 011.
  • Tanin E.H. and Tenkanen T. Gravitational wave constraints on the observable inflation, JCAP. 2021, vol. 01, p. 053
  • Tashiro H., Chiba T. and Sasaki M. Reheating after quintessential inflation and gravitational waves, Class. Quant. Grav. 2004, vol. 21, p. 1761.
  • Ahmad S., Myrzakulov R. and Sami M. Relic gravitational waves from Quintessential Inflation, Phys. Rev. D. 2017, vol. 96, no. 6, p. 063515.
  • Gangopadhyay M.R., Myrzakul S., Sami M. and Sharma M.K. Paradigm of warm quintessential inflation and production of relic gravity waves, Phys. Rev. D. 2021, vol. 103, no. 4, p. 043505.
  • Fomin I.V., Chervon S.V., Morozov A.N. and Golyak I.S. Relic gravitational waves in verified inflationary models based on the generalized scalar–tensor gravity, Eur. Phys. J. C. 2022, vol. 82, no. 7, p. 642.
  • Jeannerot R., Rocher J. and Sakellariadou M. How generic is cosmic string formation in SUSY GUTs, Phys. Rev. D. 2003, vol. 68, p. 103514.
  • Kachru S., Kallosh R., Linde A.D., Maldacena J.M., McAllister L.P. and Trivedi S.P. Towards inflation in string theory, JCAP. 2003, vol. 10, p. 013.
  • Chang C.F. and Cui Y. Gravitational waves from global cosmic strings and cosmic archaeology, JHEP. 2022, vol. 03, p. 114.
  • Sasaki M., Suyama T., Tanaka T. and Yokoyama S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914, Phys. Rev. Lett. 2018, vol. 121, no. 5, p. 059901.
  • Domènech G. Were recently reported MHz events planet mass primordial black hole mergers?, Eur. Phys. J. C. 2021, vol. 81, no. 11, p. 1042.
  • Tristram M., Banday A.J., Górski K.M., Keskitalo R., Lawrence C.R., Andersen K.J., Barreiro R.B., Borrill J., Colombo L.P.L. and Eriksen H.K. et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck data, Phys. Rev. D. 2022, vol. 105, no. 8, p. 083524.
  • Abbott B.P. et al. [LIGO Scientific and Virgo], Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run, Phys. Rev. D. 2019, vol. 100, no. 6, p. 061101.
  • Caprini C. and Figueroa D.G. Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 2018, vol. 35, no. 16, p. 163001.
  • Cabass G., Pagano L., Salvati L., Gerbino M., Giusarma E. and Melchiorri A. Updated Constraints and Forecasts on Primordial Tensor Modes, Phys. Rev. D. 2016, vol. 93, no. 6, p. 063508.
  • Rudenko V.N., Sazhin M.V. Laser interferometer as a gravitational wave detector, Sov. J. Quantum Electron. 1980, vol. 10, no. 1, p. 1366.
  • Blaut A. Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity, Phys. Rev. D. 2012, vol. 85, p. 043005.
  • Golyak I.S., Esakov A.A., Morozov A.N., Nazolin A.L., Tabalin S.E., Fomin I.V. Information-Measuring Complex to Detect High Frequency Gravitational Waves. Radio Engineering. 2021, vol. 2, p. 13.
  • Maggiore M. Gravitational waves. Volume 1: theory and experiments, Oxford Master Series in Physics, (Oxford University Press, 2007). https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
  • Iwaguchi S. et al. Quantum noise in a Fabry-Perot interferometer including the influence of diffraction loss of light, Galaxies. 2021, vol. 9, no. 1, p. 9.
  • Schmitz K. New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions, JHEP. 2021, vol. 01, p. 097.
  • Goryachev M., Campbell W.M., Heng I.S., Galliou S., Ivanov E.N. and Tobar M.E. Rare Events Detected with a Bulk Acoustic Wave High Frequency Gravitational Wave Antenna, Phys. Rev. Lett. 2021, vol. 127, no. 7, p. 071102.
  • Lasky P.D. and Thrane E. Did Goryachev et al. detect megahertz gravitational waves? Phys. Rev. D. 2021, vol. 104, no. 10, p. 103017.
Еще
Статья научная