COVID-19 and vitamins: prevention and treatment of the disease

Автор: Ergasheva Zumrad Abdukayumovna

Журнал: Re-health journal.

Рубрика: Актуальная тема

Статья в выпуске: 1 (13), 2022 года.

Бесплатный доступ

During the COVID-19 pandemic, there has been an increase in health data (correct and incorrect). Many have switched to using vitamins and supplements to fight the virus. In this article, we analyze clinical analysis for vitamins and supplements in the treatment and prevention of COVID-19 infections.

COVID-19, pandemic, virus, vitamin, supplements, infection, treatment, clinical analyse

Короткий адрес: https://sciup.org/14124625

IDR: 14124625

Список литературы COVID-19 and vitamins: prevention and treatment of the disease

  • Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2021;325(7):632–644. doi: 10.1001/jama.2021.0202.
  • Kim YJ, Jang US, Soh SM, Lee JY, Lee HR. The impact on infectivity and neutralization efficiency of SARS-CoV-2 lineage B.1.351 Pseudovirus. Viruses. 2021;13(4):633. doi: 10.3390/v13040633.
  • Anti-SARS-CoV-2 Monoclonal Antibodies. National Institutes of Health, US Department of Health and Human Services; www.covid19treatmentguidelines.nih.gov/antisars-cov-2-antibody-products/anti-sars-cov-2-monoclonal-antibodies.
  • Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibody for Treatment of COVID-19. US Food and Drug Administration; https://www.fda.gov/newsevents/ press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonalantibody-treatment-covid-19.
  • Pharmacologic Interventions. National Institutes of Health, US Department of Health and Human Services; www.covid19treatmentguidelines.nih.gov/critical-care/pharmacologicinterventions/
  • Immunomodulators. National Institutes of Health; https://www.covid19treatmentguidelines.nih.gov/immunomodulators
  • Bhimraj A, Morgan R, Hirsch Shumaker A. IDSA Guidelines on the treatment and management of patients with COVID-19. https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management
  • Alhazzani W, Evans L, Alshamsi F. Surviving sepsis campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: first update. Crit Care Med. https://journals.lww.com/ccmjournal/Fulltext/2021/03000/Surviving_Sepsis_Campaign_Guidelines_on_the.21.aspx.
  • World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. https://www.who.int/publications/i/item/10665-332299.
  • Centers for Disease Control and Prevention. Information for clinicians on investigational therapeutics for patients with COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/hcp/therapeutic-options.html.
  • Wang MX, Gwee SXW, Pang J. Micronutrients deficiency, supplementation and novel coronavirus infections-a systematic review and meta-analysis. Nutrients. 2021;13(5):1589. doi: 10.3390/nu13051589.
  • Gorji A, Khaleghi Ghadiri M. Potential roles of micronutrient deficiency and immune system dysfunction in the coronavirus disease 2019 (COVID-19) pandemic. Nutrition. 2021;82:111047. doi: 10.1016/j.nut.2020.111047.
  • Teshome A, Adane A, Girma B, Mekonnen ZA. The impact of vitamin D level on COVID-19 infection: systematic review and meta-analysis. Front Public Health. 2021;9:624559. doi: 10.3389/fpubh.2021.624559.
  • Petrelli F, Luciani A, Perego G, Dognini G, Colombelli PL, Ghidini A. Therapeutic and prognostic role of vitamin D for COVID-19 infection: A systematic review and meta-analysis of 43 observational studies. J Steroid Biochem Mol Biol. 2021;211:105883. doi: 10.1016/j.jsbmb.2021.105883.
  • 48. D’Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. doi: 10.3390/nu12051359.
  • Meltzer DO, Best TJ, Zhang H, Vokes T, Arora V, Solway J. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw Open. 2020;3(9):e2019722. doi: 10.1001/jamanetworkopen.2020.19722.
  • Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693–3702. doi: 10.1111/febs.15495.
  • Radujkovic A, Hippchen T, Tiwari-Heckler S, Dreher S, Boxberger M, Merle U. Vitamin D deficiency and outcome of COVID-19 Patients. Nutrients. 2020;12(9):2757. doi: 10.3390/nu12092757.
  • Baktash V, Hosack T, Patel N, et al. Vitamin D status and outcomes for hospitalized older patients with COVID-19. Postgrad Med J. 2021;97(1149):442–447. doi: 10.1136/postgradmedj-2020-138712.
  • Carpagnano GE, Di Lecce V, Quaranta VN, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest. 2021;44(4):765–771. doi: 10.1007/s40618-020-01370-x.
  • Moghaddam A, Heller RA, Sun Q, et al. Selenium deficiency is associated with mortality risk from COVID-19. Nutrients. 2020;12(7):2098. doi: 10.3390/nu12072098.
  • Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. doi: 10.1001/jamanetworkopen.2020.11122.
  • Jakovac H. COVID-19 and vitamin D-is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab. 2020;318:E589. doi: 10.1152/ajpendo.00138.2020.
  • Caccialanza R, Laviano A, Lobascio F, et al. Early nutritional supplementation in noncritically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020;74:110835. doi: 10.1016/j.nut.2020.110835.
  • Carter SJ, Baranauskas MN, Fly AD. Considerations for obesity, vitamin D, and physical activity amid the COVID-19 pandemic. Obesity. 2020;28:1176–1177. doi: 10.1002/oby.22838.
  • Malaguarnera L. Vitamin D3 as potential treatment adjuncts for COVID-19. Nutrients. 2020;12:3512. doi: 10.3390/nu12113512.
  • Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol. 2019;29:e2032. doi: 10.1002/rmv.2032.
  • Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi: 10.1136/bmj.i6583.
  • Panagiotou G, Tee SA, Ihsan Y, et al. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID-19 are associated with greater disease severity. Clin Endocrinol. 2020;93:508–511. doi: 10.1111/cen.14276.
  • Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res. 2020;32:1195–1198. doi: 10.1007/s40520-020-01570-8.
  • Munshi R, Hussein MH, Toraih EA, et al. Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol. 2021;93:733–740. doi: 10.1002/jmv.26360.
  • Laird E, Rhodes J, Kenny RA. Vitamin D and inflammation: potential implications for severity of Covid-19. Ir Med J. 2020;113(5):81.
  • D’Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. doi: 10.3390/nu12051359.
  • Meltzer DO, Best TJ, Zhang H, Vokes T, Arora V, Solway J. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw Open. 2020;3(9):e2019722. doi: 10.1001/jamanetworkopen.2020.19722.
  • Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693–3702. doi: 10.1111/febs.15495.
  • Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751. doi: 10.1016/j.jsbmb.2020.105751.
  • Rastogi A, Bhansali A, Khare N, et al. Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study) Postgrad Med J. 2020. postgradmedj-2020-139065.
  • Ling SF, Broad E, Murphy R, et al. High-dose cholecalciferol booster therapy is associated with a reduced risk of mortality in patients with COVID-19: a cross-sectional multi-centre observational study. Nutrients. 2020;12(12):3799. doi: 10.3390/nu12123799.
  • Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11):1211. doi: 10.3390/nu9111211.
  • Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;1:CD000980. doi: 10.1002/14651858.CD000980.pub4.
  • Farjana M, Moni A, Sohag AAM, et al. Repositioning vitamin C as a promising option to alleviate complications associated with COVID-19. Infect Chemother. 2020;52(4):461–477. doi: 10.3947/ic.2020.52.4.461. [
  • Hemilä H. Vitamin C and infections. Nutrients. 2017;9(4):E339. doi: 10.3390/nu9040339.
  • Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9(6):E624. doi: 10.3390/nu9060624.
  • Singh M, Das RR. Zinc for the common cold. Cochrane Datab Syst Rev. 2011;2:CD001364. doi: 10.1002/14651858.CD001364.pub3.
  • Eby GA, Davis DR, Halcomb WW. Reduction in duration of common colds by zinc gluconate lozenges in a double-blind study. Antimicrob Agents Chemother. 1984;25(1):20–24. doi: 10.1128/AAC.25.1.20.
  • Hemilä H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM Open. 2017;8(5):2054270417694291. doi: 10.1177/2054270417694291.
  • Weismann K, Jakobsen JP, Weismann JE, et al. Zinc gluconate lozenges for common cold: a double-blind clinical trial. Dan Med Bull. 1990;37(3):279–281.
  • Te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits corona virus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176. doi: 10.1371/journal.ppat.1001176.
  • Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJ, Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol. 2009;83(1):58–64. doi: 10.1128/JVI.01543-08.
  • Li RJ, Ji WQ, Pang JJ, et al. Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome. Tohoku J Exp Med. 2013;229(1):45–51. doi: 10.1620/tjem.229.45.
  • Sardu C, Santulli G, Santamaria M, et al. Effects of alpha lipoic acid on multiple cytokines and biomarkers and recurrence of atrial fibrillation within 1 year of catheter ablation. Am J Cardiol. 2017;119(9):1382–1386. doi: 10.1016/j.amjcard.2017.01.040.
  • Casciato P, Ambrosi N, Caro F, et al. Alpha-lipoic acid reduces postreperfusion syndrome in human liver transplantation – a pilot study. Transpl Int. 2018;31(12):1357–1368. doi: 10.1111/tri.13314.
  • Bacchetti P, Leung JM. Sample size calculations in clinical research. Anesthesiology. 2002;97(4):1028–1029. doi: 10.1097/00000542-200210000-00050. author reply 1029–1032.
  • Zhong M, Sun A, Xiao T, et al. A randomized, single-blind, group sequential, activecontrolled study to evaluate the clinical efficacy and safety of α-Lipoic acid for critically ill patients with coronavirus disease 2019 (COVID-19) medRxiv. 2020 doi: 10.1101/2020.04.15.20066266. 04.15.20066266.
Еще
Статья научная