Calibration and validation of the Menetrey-Willam constitutive model for concrete

Автор: Dmitriev Andrei Nikolaevich, Novozhilov Iurii Vladislavovich, Mikhaliuk Dmitrii Sergeevich, Lalin Vladimir Vladimirovich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 3 (88), 2020 года.

Бесплатный доступ

Flow plasticity theory has been widely used for nonlinear simulation of reinforced concrete (RC) structures. Constitutive relations of flow plasticity theory in CAE software are referred to as material models. One of the most popular concrete models is the Menetrey-Willam model realized in ANSYS software. The Menetrey-Willam constitutive model can well capture many important mechanical behaviors of concrete such as different tensile and compression strength, nonlinear hardening, softening, and dilatancy. However, there is no published calibration methodology with a clear foundation based on structural design standards. This study suggests an effective calibration procedure to identify the input parameters for the Menetrey-Willam model, mainly according to the CEB-FIP Model Code. Firstly, the identified parameters were verified on basic material tests by a single element simulation. Verification revealed full compliance simulation results with the standards for uniaxial compression, uniaxial tension, and biaxial compression stress states. To validate the ability of the material model to objectively reproduce structural behavior we validated it on six structural tests: confined uniaxial compression of a cube specimen, four-point bending test of a RC beam, three-point bending test of a notched concrete beam, eccentric compression of a RC column, shear rupture test and push-off test of an S-shaped specimen. For all structural tests, a mesh sensitivity analysis was also carried out. The use of the proposed model parameters allows to achieve a good match with the experimental data for all the considered problems almost independently of the mesh size. The obtained parameters can be conveniently used for occasional users without special knowledge in the field of concrete mechanics.

Еще

Concretes, calibration, computer simulation, constitutive models, strength, stress-strain curves, static loads, finite element method, plasticity, ansys

Короткий адрес: https://readera.org/143172519

IDR: 143172519   |   DOI: 10.18720/CUBS.88.4

Список литературы Calibration and validation of the Menetrey-Willam constitutive model for concrete

  • Menetrey, P.H., Willam, K.J. Triaxial failure criterion for concrete and its generalization. ACI Structural Journal. 1995. 92. Pp. 311-318.
  • Ottosen, N.S. A Failure Criterion for Concrete. ASCE Engineering Mechanics Division. 1977. 103(4). Pp. 527-535.
  • Willam, K.J., Warnke, E.P. Constitutive model for triaxial behaviour of concrete. International Association for Bridges and Structural Engineering. 1974. 19. Pp. 1-30. DOI: 10.5169/seals-17526
  • Grassl, P., Lundgren, K., Gylltoft, K. Concrete in compression: a plasticity theory with a novel hardening law. International Journal of Solids and Structures. 2002. 39(20). Pp. 5205-5223. 10.1016/S0020-7683(02)00408-0. https://www.sciencedirect.com/science/article/pii/S0020768302004080. DOI: 10.1016/S0020-7683(02)00408-0.https
  • Bažant, Z.P., Yuyin, X., Prat, P.C. Microplane Model for Concrete. I: Stress-Strain Boundaries and Finite Strain. Journal of Engineering Mechanics. 1996. 122(3). Pp. 245-254. :3(245). DOI: 10.1061/(ASCE)0733-9399(1996)122
  • Bažant, Z.P., Xiang, Y., Adley, M.D., Prat, P.C., Akers, S.A. Microplane Model for Concrete: II: Data Delocalization and Verification. Journal of Engineering Mechanics. 1996. 122(3). Pp. 255-262. :3(255).
  • DOI: 10.1061/(ASCE)0733-9399(1996)122
  • Bazant, Z.P., Ozbolt, J. Non local microplane model for fracture, damage and size effects in structures. J. Engrg. Mech., ASCE. 1990. 116(11). Pp. 2485-2505. :11(2485).
  • DOI: 10.1061/(ASCE)0733-9399(1990)116
  • Bazant, Z.P., Ozbolt, J. Compression Failure of Quasibrittle Material: Nonlocal Microplane Model. Journal of Engineering Mechanics. 1992. 118(3). Pp. 540-556. :3(540).
  • DOI: 10.1061/(ASCE)0733-9399(1992)118
  • Bažant, Z.P., Prat, P.C. Microplane Model for Brittle-Plastic Material: I. Theory. Journal of Engineering Mechanics. 1988. 114(10). Pp. 1672-1688. :10(1672).
  • DOI: 10.1061/(ASCE)0733-9399(1988)114
  • Bažant, Z.P., Prat, P.C. Microplane Model for Brittle-Plastic Material: II. Verification. Journal of Engineering Mechanics. 1988. 114(10). Pp. 1689-1702. :10(1689).
  • DOI: 10.1061/(ASCE)0733-9399(1988)114
  • Bažant, Z.P., Byung, H.O. Microplane Model for Progressive Fracture of Concrete and Rock. Journal of Engineering Mechanics. 1985. 111(4). Pp. 559-582. :4(559).
  • DOI: 10.1061/(ASCE)0733-9399(1985)111
  • Bažant, Z.P., Gambarova, P.G. Crack Shear in Concrete: Crack Band Microflane Model. Journal of Structural Engineering. 1984. 110(9). Pp. 2015-2035. :9(2015).
  • DOI: 10.1061/(ASCE)0733-9445(1984)110
  • Valanis, K.C., Read, H.E. An endochronic plasticity theory for concrete. Mechanics of Materials. 1986. 5(3). Pp. 277-295. 10.1016/0167-6636(86)90024-4. https://www.sciencedirect.com/science/article/pii/0167663686900244?via%3Dihub.
  • DOI: 10.1016/0167-6636(86)90024-4.https
  • Bazant, Z.P., Bhat, P.D., Shieh, C.L. Endochronic theory for inelasticity and failure analysis of concrete structuresUnited States, 1976.
  • Bažant, Z.P. Endochronic inelasticity and incremental plasticity. International Journal of Solids and Structures. 1978. 14(9). Pp. 691-714. 10.1016/0020-7683(78)90029-X. https://www.sciencedirect.com/science/article/pii/002076837890029X?via%3Dihub.
  • DOI: 10.1016/0020-7683(78)90029-X.https
  • Bažant, Z.P., Ching-Long Shieh. Endochronic model for nonlinear triaxial behavior of concrete. Nuclear Engineering and Design. 1978. 47(2). Pp. 305-315. 10.1016/0029-5493(78)90074-2. https://www.sciencedirect.com/science/article/pii/0029549378900742?via%3Dihub.
  • DOI: 10.1016/0029-5493(78)90074-2.https
  • Kachanov, L.M. Introduction to Continuum Damage Mechanics. Springer, Dordrecht, 1986.
  • Krajcinovic, D., Fonseka, G.U. The Continuous Damage Theory of Brittle Materials, Part 1: General Theory. Journal of Applied Mechanics. 1981. 48(4). Pp. 809-815.
  • DOI: 10.1115/1.3157739
  • Krajcinovic, D. Constitutive Equations for Damaging Materials. Journal of Applied Mechanics. 1983. 50(2). Pp. 355-360.
  • DOI: 10.1115/1.3167044
  • Krajcinovic, D., Mastilovic, S. Some fundamental issues of damage mechanics. Mechanics of Materials. 1995. 21(3). Pp. 217-230. 10.1016/0167-6636(95)00010-0. https://www.sciencedirect.com/science/article/pii/0167663695000100.
  • DOI: 10.1016/0167-6636(95)00010-0.https
  • Krajcinovic, D. Damage Mechanics. Mechanics of Materials. 1989. 8 (2-3). Pp. 117-197.
  • DOI: 10.1016/0167-6636(89)90011-2
  • Valanis, K. A Theory of Viscoplasticity without a Yield Surface. Part 1. General Theory. Archives of Mechanics. 1970. 23. Pp. 517-551.
  • Pisano, A.A. An algorithmic approach for peak load evaluation of structural elements obeying a Menetrey-Willam type yield criterion. Electronic Journal of Differential Equations. 2012. 2012(167). Pp. 1-9. https://ejde.math.txstate.edu/Volumes/2012/167/pisano.pdf
  • Jasinski, R. Validation of elastic-brittle, and elastic-plastic FEM model of the wall made of calcium silicate and AAC masonry units. IOP Conference Series: Materials Science and Engineering. 2019. 603(3).
  • DOI: 10.1088/1757-899X/603/3/032001
  • Červenka, J., Papanikolaou, V.K. Three dimensional combined fracture-plastic material model for concrete. International Journal of Plasticity. 2008. 24(12). Pp. 2192-2220. 10.1016/j.ijplas.2008.01.004. https://www.sciencedirect.com/science/article/pii/S0749641908000259?via%3Dihub.
  • DOI: 10.1016/j.ijplas.2008.01.004.https
  • Zhang, J., Ma, L., Zhang, Z.X. Elastoplastic Damage Model for Concrete Under Triaxial Compression and Reversed Cyclic Loading. Strength of Materials. 2018. 50(5). Pp. 724-734.
  • DOI: 10.1007/s11223-018-0017-3
  • Wang, R.Z., Wang, C.Y., Lin, Y.L. Numerical Model of High Strength Concrete. IOP Conference Series: Materials Science and Engineering. 2018. 317(1).
  • DOI: 10.1088/1757-899X/317/1/012069
  • Radosław, J. Identification of the Parameters of Menétrey -Willam Failure Surface of Calcium Silicate Units. IOP Conference Series: Materials Science and Engineering. 2017. 245(3).
  • DOI: 10.1088/1757-899X/245/3/032045
  • Mazzucco, G., Xotta, G., Salomoni, V.A., Majorana, C. Integral-type regularization of non associated softening plasticity for quasi brittle materials. Computers and Structures. 2019. 224.
  • DOI: 10.1016/j.compstruc.2019.106120
  • Pisano, A.A., Fuschi, P., De Domenico, D. Limit state evaluation of steel-reinforced concrete elements by von mises and Meńetrey-Willam-type yield criteria. International Journal of Applied Mechanics. 2014. 6(5). Pp. 1450058. 10.1142/S1758825114500586. https://www.worldscientific.com/doi/pdf/10.1142/S1758825114500586.
  • DOI: 10.1142/S1758825114500586.https
  • Pisano, A.A., Fuschi, P., De Domenico, D. Peak loads and failure modes of steel-reinforced concrete beams: Predictions by limit analysis. Engineering Structures. 2013. 56. Pp. 477-488. 10.1016/j.engstruct.2013.05.030. https://www.sciencedirect.com/science/article/pii/S0141029613002538.
  • DOI: 10.1016/j.engstruct.2013.05.030.https
  • Pisano, A.A., Fuschi, P., De Domenico, D. A kinematic approach for peak load evaluation of concrete elements. Computers and Structures. 2013. 119. Pp. 125-139. 10.1016/j.compstruc.2012.12.030. https://www.sciencedirect.com/science/article/pii/S0045794913000102.
  • DOI: 10.1016/j.compstruc.2012.12.030.https
  • Hokeš, F., Kala, J., Hušek, M., Král, P. Parameter Identification for a Multivariable Nonlinear Constitutive Model inside ANSYS Workbench. Procedia Engineering. 2016. 161. Pp. 892-897.
  • DOI: 10.1016/j.proeng.2016.08.743
  • CEB-FIP Model Code 90. CEB Bulletin. 1993213/214. Thomas Telford Ltd. 978-0-7277-1696-5, London, 460 p. https://www.fib-international.org/publications/ceb-bulletins/ceb-fip-model-code-90-pdf-detail.html
  • ISBN: 9780727716965
  • fib. Model Code for Concrete Structures 2010. International Federation for Structural Concrete, 2013. 978-3-433-03061-5, 434 p.
  • ISBN: 9783433030615
  • Vermeer, P.A. Non-Associated Plasticity for Soils, Concrete and Rock. Physics of Dry Granular Media. Springer Netherlands. Dordrecht, 1998. Pp. 163-196.
  • Smith, S.S., Willam, K.J., Gerstle, K.H., Sture, S. Concrete over the top, or is there life after peak. ACI Materials Journal. 1989. 86. Pp. 491-497.
  • Frantziskonis, G., Desai, C.S., Somasundaram, S. Constitutive Model for Nonassociative Behavior. Journal of Engineering Mechanics. 1986. 112(9). Pp. 932-946. :9(932).
  • DOI: 10.1061/(ASCE)0733-9399(1986)112
  • Hansen, C.E.B. Line ruptures regarded as narrow rupture zones - basic equations based on kinematic considerations. Proc. Brussels Conf. 58 on Earth Pressure Problems. 1958. 1. Pp. 39-48.
  • Rowe, P.W. Theoretical meaning and observed values of deformation parameters for soil. Proc. Rascoe Mem. Symp. on Stress Strain Behaviour of Soils. 1972. Pp. 143-194.
  • Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E., Rodriguez, E.A. Concepts of Model Verification and Validation. Technical report, Los Alamos National Lab., Los Alamos, NM, United States. 2004. 28 p.
  • DOI: 10.2172/835920
  • Oreskes, N., Shrader-Frechette, K., Belitz, K. Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science. 1994. 263(5147). Pp. 641-646. 10.1126/science.263.5147.641. http://science.sciencemag.org/content/263/5147/641.abstract.
  • DOI: 10.1126/science.263.5147.641.http
  • EN1992-1-1. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standartization, 2004.
  • Kupfer, H.B., Gerstle, K.H. Behavior of Concrete under Biaxial Stresses. Journal of Engineering Mechanics. 1973. 99. Pp. 853-866.
  • SP 15.13330.2012 Masonry and reinforced masonry structures. Updated edition of SNiP II-22-81*. Ministry of Regional Development of the Russian Federation. Moscow, 2012.
  • Abdel-kareem, A.H., Debaiky, A.S., Makhlouf, M.H., Badwi, M. Repairing and Strengthening of RC Beams using thin Lower Concrete Layer Reinforced by FRP Bars. International Journal of Civil Engineering and Technology. 2019. 10(2). Pp. 1949-1966.
  • Meyer, R., Ahrens, H., Duddeck, H. Material Model for Concrete in Cracked and Uncracked States. Journal of Engineering Mechanics. 1994. 120(9). Pp. 1877-1895. :9(1877).
  • DOI: 10.1061/(ASCE)0733-9399(1994)120
  • Němeček, J., Padevět, P., Patzák, B., Bittnar, Z. Effect of transversal reinforcement in normal and high strength concrete columns. Materials and Structures. 2005. 38(7). Pp. 665.
  • DOI: 10.1007/BF02484311
  • Boulifa, R., Samai, M.L., Benhassine, M.T. A new technique for studying the behaviour of concrete in shear. Journal of King Saud University - Engineering Sciences. 2013. 25(2). Pp. 149-159. 10.1016/J.JKSUES.2012.07.001. https://www.sciencedirect.com/science/article/pii/S1018363912000293?via%3Dihub.
  • DOI: 10.1016/J.JKSUES.2012.07.001.https
  • French, R., Maher, E., Smith, M., Stone, M., Kim, J., Krauthammer, T. Direct shear behavior in concrete materials. International Journal of Impact Engineering. 2017. 108. Pp. 89-100. 10.1016/J.IJIMPENG.2017.03.027. https://www.sciencedirect.com/science/article/pii/S1018363912000293.
  • DOI: 10.1016/J.IJIMPENG.2017.03.027.https
  • Mattock, A.H., Hawkins, N.M. Shear transfer in reinforced concrete - recent research. PCI Journal. 1972. 17. Pp. 55-75.
  • DOI: 10.15554/pcij.03011972.55.75
Еще
Статья научная