Automorphic algebras of dynamical systems and generalised Inonu-Wigner contractions

Автор: Karabanov A.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Статья в выпуске: 5 (57), 2022 года.

Бесплатный доступ

Lie algebras a with a complex underlying vector space V are studied that are automorphic with respect to a given linear dynamical system on V , i.e., a 1-parameter subgroup Gt ⊂ Aut(a) ⊂ GL(V ). Each automorphic algebra imparts a Lie algebraic structure to the vector space of trajectories of the group Gt. The basics of the general structure of automorphic algebras a are described in terms of the eigenspace decomposition of the operatorM ∈ der(a) that determines the dynamics. Symmetries encoded by the presence of nonabelian automorphic algebras are pointed out connected to conservation laws, spectral relations and root systems. It is shown that, for a given dynamics Gt, automorphic algebras can be found via a limit transition in the space of Lie algebras on V along the trajectories of the group Gt itself. This procedure generalises the well-known Inönü-Wigner contraction and links adjoint representations of automorphic algebras to isospectral Lax representations on gl(V ). These results can be applied to physically important symmetry groups and their representations, including classical and relativistic mechanics, open quantum dynamics and nonlinear evolution equations. Simple examples are given.

Еще

Automorphic algebras, dynamical systems, generalised in¨on¨u-wigner contractions

Короткий адрес: https://sciup.org/149141409

IDR: 149141409   |   DOI: 10.19110/1994-5655-2022-5-5-14

Список литературы Automorphic algebras of dynamical systems and generalised Inonu-Wigner contractions

  • Serre, J.-P. Lie algebras and Lie groups / J.-P. Serre. – Berlin, New York: Springer-Verlag, 1992. (Lecture Notes in Mathematics. – Vol. 1500). – 180 p.
  • Jacobson, N. Lie algebras / N. Jacobson. – New York: Dover Publications, 1979. – 331 p.
  • Humphreys, J.E. Introduction to Lie algebras and representation theory / J.E. Humphreys. – New York, Heidelberg, Berlin: Springer-Verlag, 1972. – 173 p.
  • Francesco, P.D. Conformal field theory / P.D. Francesco, P. Mathieu, D. Sénéchal. – New York: Springer, 1997. – 911 p.
  • Carter, R.W. Finite groups of Lie type: conjugacy classes and complex characters / R.W. Carter. – Chichester, New York: Wiley, 1993. – 556 p.
  • Knapp, A.W. A course in homological algebra / A.W. Knapp. – Berlin, New York: Springer-Verlag, 1997. – 366 p.
  • Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves / P.D. Lax. // Comm. Pure Appl. Math. – 1968. – Vol. 21. – P. 467.
  • Ablowitz, M.J. Solitons and inverse scattering transform / M.J. Ablowitz, H. Segur. – Philadelphia: SIAM, 1981. – P. 435.
  • Faddeev, L. Hamiltonian methods in the theory of solitons / L. Faddeev, L. Takhtajan. – New York, Heidelberg, Berlin: Springer Verlag, 2007. – 592 p.
  • Leznov, A.N. Group-theoretical methods for integration of nonlinear dynamical systems / A.N. Leznov, M.V. Saveliev. – Basel: Birkhäuser Verlag, 1992. – 292 p.
  • Gantmacher, F. Canonical representation of automorphisms of a complex semi-simple Lie group / F. Gantmacher // Mat. Sbornik. 1939. – Vol. 5(47). – № 1. – P. 101–146.
  • Hochshild, G. Semi-simple algebras and generalized derivations / G. Hochshild // Am. J. Math. – 1942. – Vol. 64. – P. 677.
  • Hartley, B. Locally nilpotent ideals of a Lie algebra / B. Hartley // Proc. Cambridge Phil. Soc. – 1967. – Vol. 63. – P. 257.
  • Jacobson, N. A note on automorphisms and derivations of Lie algebras / N. Jacobson // Proc. Amer. Math. Soc. – 1955. – Vol. 6. – P. 281.
  • Rose, M.E. Elementary theory of angular momentum / M.E. Rose. – New York: Dover Publications, 1995. – P. 248.
  • Inönü, E. On the contraction of groups and their representations / E. Inönü, E.P. Wigner // Proc. Natl. Acad. Sci. U.S.A. – 1953. – Vol. 39. – P. 510–524.
  • Dooley, A.H. On contractions of semisimple Lie groups / A.H. Dooley, J.W. Rice // Trans. Am. Math. Soc. – 1985. – Vol. 289 (1). – P. 185–202.
  • Saletan, E.J. Contraction of Lie Groups / E.J. Saletan // J. Math. Phys. – 1961. – Vol. 2. – №1. – P. 1–21.
  • Ibort, A. The quantum-to-classical transition: contraction of associative products / A. Ibort, V.I. Man’ko, G. Marmo, A. Simoni, C. Stornaiolo [et al.] // Physica Scripta. – 2016. – Vol. 91. – P. 045201.
  • Alipour, S., et. al. Dynamical algebra of observables in dissipative quantum systems / S. Alipour, D. Chrus’cin’ski, P. Facchi, G. Marmo, S. Pascazio [et al.] // J. Phys. A: Math. Theor. – 2017. – Vol. 50. – P. 065301.
  • Gromov, N.A. Particles in the early universe: high energy limit of the standard model from the contraction of its gauge group / N.A. Gromov. – Singapure: World Scientific, 2020. – 159 p.
  • Gromov, N.A. Kogerentnost v otkritoi kvantovoi sisteme [Coherence in an open quantum system] / N.A. Gromov, I.V. Kostyakov, V.V. Kuratov // Proc. Komi Sci. Centre, Ural Branch, RAS. – 2020. – № 4(44). – P. 30–33.
  • Kostyakov, I.V. Kontraksii algebr Li i uravnenie Lindblada [Lie algebra contractions and the Lindblad equation] / I.V. Kostyakov, V.V. Kuratov, N.A. Gromov // Proc. Komi Sci. Centre, Ural Branch, RAS. – 2021. – № 6(52). – P. 36–41.
  • Yoshida, Z. Deformation of Lie-Poisson algebras and chirality / Z. Yoshida, P.H. Morrison // J. Math. Phys. – 2020. – Vol. 61. – P. 082901.
  • Paal, E. Dynamical deformations of three-dimensional Lie algebras in Bianchi classification over the harmonic oscillator / E. Paal, J. Virkepu // J. Math. Phys. – 2009. – Vol. 50. – P. 053523.
  • Gilmore, R. Lie groups, Lie algebras and some of their applications / R. Gilmore. – New York, London, Sidney, Toronto: John Wiley & Sons, 1974. – 587 p.
  • Breuer, H.-P. The theory of open quantum systems / H.- P. Breuer, F. Petruccione. – Oxford: University Press, 2002. – 625 p.
  • Kirillov, A.A. Elements of the theory of representations / A.A. Kirillov. – Berlin, Heidelberg, New York: Springer-Verlag, 1976. – 315 p.
Еще
Статья научная