Антистатические полимерные материалы

Автор: Юдаев Павел Александрович, Тамбура Бакари, Чистяков Евгений Михайлович

Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild

Рубрика: Применение наноматериалов и нанотехнологий в строительстве

Статья в выпуске: 2 т.15, 2023 года.

Бесплатный доступ

Введение. В связи с растущим спросом к условиям жизни и работы в гражданском и промышленном строительстве возрастает необходимость в качественных строительных материалах, обладающих требуемым набором эксплуатационных свойств. Полимерные армированные композиционные материалы являются перспективными материалами в строительной индустрии благодаря их высокой прочности, долговечности, надежности и экономичности. Полимеры, такие как поливинилхлорид, полиуретаны, полиакрилаты, эпоксидные смолы, полипропилен, используются в строительстве для изготовления элементов декора, наливных полов, покрытий приборов и оборудования. Однако применение полимерных материалов создает риски поражения электрическим током в связи с генерацией статического заряда. Применение электропроводящих наноматериалов в качестве наполнителей позволяет снизить удельное сопротивление полимерных материалов и замедлить поток электрических зарядов. Основная часть. В настоящей обзорной статье приведены достоинства и недостатки антистатических добавок для полимерных материалов, применяемых в промышленности и в строительной индустрии. Заключение. Анализ литературы показал, что за последние семь лет наибольшее число работ посвящено углеродным материалам в качестве антистатических добавок (8 статей), наночастицам металлов и оксидов металлов (7 статей), ионным жидкостям (7 статей), полианилину (7 статей). Наиболее изученными параметрами антистатических полимерных материалов являются удельное поверхностное RS и объемное RV сопротивление. Согласно данным рассмотренных статей, наночастицы металлов и оксидов металлов являются наиболее подходящими антистатическими добавками к полимерным материалам, поскольку хорошо диспергируются в полимерной матрице. Однако необходимы дальнейшие исследования для устранения негативного влияния наночастиц на механические свойства полимерных материалов.

Еще

Наночастицы, статическое электричество, углеродные нанотрубки, оксид графена, ионные жидкости, строительная индустрия

Короткий адрес: https://sciup.org/142238048

IDR: 142238048   |   DOI: 10.15828/2075-8545-2023-15-2-139-151

Список литературы Антистатические полимерные материалы

  • Yadav R., Tirumali M., Wang, X., Naebe M., Kandasubramanian B. Polymer composite for antistatic application in aerospace. Defence Technology. 2020;16(1):107-118. https://doi.org/10.1016/j.dt.2019.04.008
  • Kalender-Smajlović S., Kukec A., Dovjak M. The problem of indoor environmental quality at a general Slovenian hospital and its contribution to sick building syndrome. Building and Environment. 2022;214:108908. https://doi.org/10.1016/j.buildenv.2022.108908
  • Jeong M.Y., Byung-Yoon A.H.N., Sang-Koul L.E.E., Won-Ki, L.E.E., Nam-Ju, J.O. Antistatic coating material consisting of poly (butylacrylate-co-styrene) core-nickel shell particle. Transactions of Nonferrous Metals Society of China. 2009;19:119-123. https://doi.org/10.1016/S1003-6326(10)60258-0
  • Chou H.C., Yeh C.T., Shu C.M. Fire accident investigation of an explosion caused by static electricity in a propylene plant. Process Safety and Environmental Protection. 2015; 97:116-121. https://doi.org/10.1016/j.psep.2015.02.007
  • Baytekin H.T., Baytekin B., Hermans T.M., Kowalczyk B., Grzybowski B.A. Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry. Science. 2013; 341(6152):1368-1371. https://doi.org/10.1126/science.1241326
  • Al-Badra M.Z., Abd-Elhady M.S., Kandil H.A. A novel technique for cleaning PV panels using antistatic coating with a mechanical vibrator. Energy Reports. 2020; 6:1633-1637. https://doi.org/10.1016/j.egyr.2020.06.020
  • Amsc N., Reli A. Military handbook electrostatic discharge control handbook for protection of electrical and electronic parts, assemblies and equipment (excluding electrically initiated explosive devices) (metric). 1991.
  • Bhardwaj P., Grace A N. Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite. Diamond and Related Materials. 2020;106; 107871. https://doi.org/10.1016/j.diamond.2020.107871
  • ESD Association (2020) Part 6: ESD Standards. https://www.esda.org/esd-overview/esd-fundamentals/part-6-esdstandards/.Accessed 13 Dec 2022.
  • ESD Flooring-Definition, Types, Applications, Antistatic Resistance Standard & Best Options. Available online: https://www.accessfloorstore.com/news/228--esd-flooring-definition-types-applications-antistatic-resistance-standard--best-options. (Accessed on 13 May 2021).
  • Kosiński S., Rykowska I., Gonsior M., Krzyżanowski P. Ionic liquids as antistatic additives for polymer composites – A review. Polymer Testing. 2022;112(1); 107649. https://doi.org/10.1016/j.polymertesting.2022.107649
  • Memon H., Wang H., Yasin S., Halepoto A. Influence of incorporating silver nanoparticles in protease treatment on fiber friction, antistatic, and antibacterial properties of wool fibers. Journal of Chemistry. 2018. https://doi.org/10.1155/2018/4845687
  • Rahman M.M. Polyurethane/zinc oxide (PU/ZnO) composite-synthesis, protective property and application. Polymers. 2020; 12(7); 1535. https://doi.org/10.3390/polym12071535
  • Tian Y., Zhang X., Geng H.Z., Yang H.J., Li C., Da S.X., Lu X., Wang J., Jia S.L. Carbon nanotube/polyurethane films with high transparency, low sheet resistance and strong adhesion for antistatic application. RSC advances. 2017; 7(83):53018-53024. https://doi:10.1039/C7RA10092B.
  • Sangermano M., Marchi S., Valentini L., Bon S.B., Fabbri P. Transparent and conductive graphene oxide/poly (ethylene glycol) diacrylate coatings obtained by photopolymerization. Macromolecular Materials and Engineering. 2011; 296(5):401-407. https://doi.org/10.1002/mame.201000372
  • Saini P., Choudhary V., Dhawan S.K. Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polymers for Advanced Technologies. 2012;23(3):343-349. https://doi.org/10.1002/pat.1873
  • Zheng A., Xu X., Xiao H., Li N., Guan Y., Li S. Antistatic modification of polypropylene by incorporating Tween/ modified Tween. Applied surface science. 2012; 258(22):8861-8866. https://doi.org/10.1016/j.apsusc.2012.05.105
  • Wei Y., Jiang S., Li C., Li J., Li X., Li J., Fang Z. Organic-inorganic hybrid network to enhance the electrostatic shielding of multifunctional soybean meal-based adhesive. Industrial Crops and Products. 2022; 189:115850. https://doi.org/10.1016/j.indcrop.2022.115850
  • Elnozahy A., Abd-Elbary H., Abo-Elyousr F.K. Efficient Energy Harvesting from PV Panel with Reinforced Hydrophilic Nano-materials for Eco-buildings. Energy and Built Environment. 2022. https://doi.org/10.1016/j.enbenv.2022.12.001
  • Karmankar R.G. Extraction of Carbon Black from The Coconut Shell. International Research Journal of Engineering and Technology (IRJET). 2016; 3(1):1286-1291.
  • Choi H.J., Kim M.S., Ahn D., Yeo S.Y., Lee S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Scientific reports. 2019; 9(1):1-12. https://doi.org/10.1038/s41598-019-42495-1
  • Ezquerra T.A., Connor M.T., Roy S., Kulescza M., Fernandes-Nascimento J., Baltá-Calleja F.J. Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites. Composites science and technology. 2001; 61(6):903-909. https://doi.org/10.1016/S0266-3538(00)00176-7
  • Zhang M., Zhang C., Du Z., Li H., Zou W. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Composites Science and Technology. 2017;138:1-7. https://doi.org/10.1016/j.compscitech.2016.11.010
  • de Souza Vieira L., dos Anjos E.G.R., Verginio G.E.A., Oyama I.C., Braga N.F., da Silva T.F. Passador F.R. Carbonbased materials as antistatic agents for the production of antistatic packaging: a review. Journal of Materials Science: Materials in Electronics. 2021;32(4):3929-3947. https://doi.org/10.1007/s10854-020-05178-6
  • Wang Q., Wang T., Wang J., Guo W., Qian Z., Wei T. Preparation of antistatic high‐density polyethylene composites based on synergistic effect of graphene nanoplatelets and multi‐walled carbon nanotubes. Polymers for Advanced Technologies. 2018; 29(1):407-416. https://doi.org/10.1002/pat.4129
  • Ying F., Cui Y., Xue G., Qian H., Li A., Wang X., Jiang, D. Preparation and properties of an antistatic UV-curable coating modified by multi-walled carbon nanotubes. Polymer Bulletin. 2016;73(10):2815-2830. https://doi.org/10.1007/s00289-016-1623-5
  • Imiołek P., Kasprowicz K., Laska J. Antistatic polyethylene free-standing films modified with expan ded graphite–technological aspects. Polimery. 2020;65(4):275-279. https://doi.org/10.14314/polimery.2020.4.3
  • Park G.H., Kim K.T., Ahn Y.T., Lee H.I., Jeong H.M. The effects of graphene on the properties of acrylic pressuresensitive adhesive. Journal of Industrial and Engineering Chemistry. 2014;20(6):4108-4111. https://doi.org/10.1016/j.jiec.2014.01.008
  • Zhang Y., Li T.T., Shiu B.C., Sun F., Ren H.T., Zhang X.F., Lin J.H. Mass production and effect of polyurethane/graphene coating on the durability and versatile protection of ultralight nylon fabrics. Polymer International. 2021;70(3):308-316. https://doi.org/10.1002/pi.6135
  • Fan L., Tan Y., Amesimeku J., Yin Y., Wang C. A novel functional disperse dye doped with graphene oxide for improving antistatic properties of polyester fabric using one-bath dyeing method. Textile Research Journal. 2020;90(5-6):655-665. https://doi:10.1177/0040517519877464
  • Meng Z., Lu S., Zhang D., Liu Q., Chen X., Liu W., Ke Y. Grafting macromolecular chains on the surface of graphene oxide through crosslinker for antistatic and thermally stable polyethylene terephthalate nanocomposites. RSC advances. 2022;12(51):33329-33339. https://doi:10.1039/D2RA06725K
  • Li C., Liang T., Lu W., Tang C., Hu X., Cao M., Liang J. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Composites Science and Technology. 2004; 64(13-14):2089-2096. https://doi:10.1016/j.compscitech.2004.03.010
  • Ma P.-C., Siddiqui N.A., Marom G., Kim J.-K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A. Appl. Sci. Manuf. 2010;41:1345-1367. https://doi:10.1016/j.compositesa.2010.07.003
  • Tanabi H., Erdal M. Effect of CNTs Dispersion on Electrical, Mechanical and Strain Sensing Properties of CNT/Epoxy Nanocomposites. Results Phys. 2019;12:486-503. https://doi.org/10.1016/j.rinp.2018.11.081
  • Tasis D., Tagmatarchis N., Bianco A., Prato M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006; 106:1105-1136. https://doi:10.1021/cr050569o
  • Zhao X., Ye L. Structure and Mechanical Properties of Polyoxymethylene/Multi-Walled Carbon Nanotube Composites. Compos. Part B Eng. 2011; 42:926-933. https://doi.org/10.1016/j.compositesb.2011.01.002
  • Skákalová V., Kaiser A.B., Dettlaff-Weglikowska U., Hrnčariková K., Roth S. Effect of Chemical Treatment on Electrical Conductivity, Infrared Absorption, and Raman Spectra of Single-Walled Carbon Nanotubes. J. Phys. Chem. B. 2005; 109:7174–7181. https://doi: 10.1021/jp044741o
  • Yan W., Shi M., Dong C., Liu L., Gao C. Applications of tannic acid in membrane technologies: A review. Advances in Colloid and Interface Science. 2020; 284:102267. https://doi:10.1016/j.cis.2020.102267
  • Liu L., Yu P., Wu M., Wu Q., Liu J., Yang J., Zhang J. Poly (tannin urethane)-stabilized multiwalled carbon nanotube aqueous dispersion for antistatic coating. Industrial & Engineering Chemistry Research. 2021; 60(33):12353-12361. https://doi.org/10.1021/acs.iecr.1c02880
  • Wang Z., Liu C., Liu Z., Xiang H., Li Z., Gong Q. π-π Interaction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites. Chem. Phys. Lett. 2005; 407:35–39. https://doi:10.1016/j.cplett.2005.03.038
  • Pilch-Pitera B., Czachor D., Kowalczyk K., Pavlova E., Wojturski J., Florczak Ł., Byczyński Ł. Conductive polyurethane-based powder clear coatings modified with carbon nanotubes. Prog. Org. Coat. 2019; 137:105367. https://doi:10.1016/j.porgcoat.2019.105367
  • Yun S.S., Shin D.H., Jang K.S. Influence of Ionomer and Cyanuric Acid on Antistatic, Mechanical, Thermal, and Rheological Properties of Extruded Carbon Nanotube (CNT)/Polyoxymethylene (POM) Nanocomposites. Polymers. 2022;14(9):1849. https://doi.org/10.3390/polym14091849
  • Long H., Harley‐Trochimczyk A., Pham T., Tang Z., Shi T., Zettl A., Maboudian R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Advanced Functional Materials. 2016;26(28):5158-5165. https://doi.org/10.1002/adfm.201601562
  • Canal-Rodríguez M., Arenillas A., Rey-Raap N., Ramos-Fernández G., Martín-Gullón I., Menéndez J.A. Graphenedoped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon. 2017;118:291-298. https://doi.org/10.1016/j.carbon.2017.03.059
  • Wen S., Wang Z., Zheng X., Wang X. Improved mechanical strength of porous chitosan scaffold by graphene coatings. Materials Letters. 2017; 186:17-20. https://doi.org/10.1016/j.matlet.2016.09.040
  • Yilmaz Dogan H., Altin Y., Bedeloğlu A.Ç. Fabrication and properties of graphene oxide and reduced graphene oxide reinforced Poly (Vinyl alcohol) nanocomposite films for packaging applications. Polymers and Polymer Composites. 2022;30. https://doi.org/10.1177/09673911221113328
  • Vieira L.D.S., dos Anjos E.G.R., Verginio G.E.A., Oyama I.C., Braga N.F., da Silva T.F., Passador F.R. A review concerning the main factors that interfere in the electrical percolation threshold content of polymeric antistatic packaging with carbon fillers as antistatic agent. Nano Select. 2022;3(2):248-260. https://doi.org/10.1002/nano.202100073
  • Zhao Y., Yao W., Wang Y., Wang Q., Lou F., Guo W. High-performance antistatic acrylic coating by incorporation with modified graphene. Journal of Materials Research. 2019;34(4):510-518. https://doi.org/10.1557/jmr.2018.436
  • Lotya M., King P. J., Khan U., De S., Coleman J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS nano. 2010;4(6):3155-3162. https://doi.org/10.1021/nn1005304
  • Mohamed A., Ardyani T., Bakar S. A., Brown P., Hollamby M., Sagisaka M., Eastoe, J. Graphene-philic surfactants for nanocomposites in latex technology. Advances in colloid and interface science. 2016; 230:54-69. https://doi.org/10.1016/j.cis.2016.01.003
  • Tang C., Long G., Hu X., Wong K. W., Lau W. M., Fan M., Hui D. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale. 2014;6(14):7877-7888. https://doi.org/10.1039/c3nr06056j
  • Zhang S., Zhang D., Li Z., Yang Y., Sun M., Kong Z., Dong W. Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites. Journal of Coatings Technology and Research. 2018;15(6):1333-1341. https://doi.org/10.1007/s11998-018-0082-3
  • Luo X., Zhong J., Zhou Q., Du S., Yuan S., Liu Y. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS applied materials & interfaces. 2018; 10(21):18400-18415. https://doi.org/10.1021/acsami.8b01982
  • Mirmohseni A., Azizi M., Dorraji M.S.S. Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: A promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications. Progress in Organic Coatings. 2020; 139:105419. https://doi.org/10.1016/j.porgcoat.2019.105419
  • Mirmohseni A., Azizi M., Dorraji M.S.S. Facile synthesis of copper/reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating. Progress in Organic Coatings. 2019;131:322-332. https://doi.org/10.1016/j.porgcoat.2019.02.031
  • Abdel-Halim E.S., Abdel-Mohdy F.A., Al-Deyab S.S., El-Newehy M.H. Chitosan and monochlorotriazinyl-β-cyclodextrin finishes improve antistatic properties of cotton/polyester blend and polyester fabrics. Carbohydrate Polymers. 2010;82(1):202-208. https://doi.org/10.1016/j.carbpol.2010.04.077
  • Li K., Fina A., Marrè D., Carosio F., Monticelli O. Graphite oxide nanocoatings as a sustaibale route to extend the applicability of biopolymer-based film. Applied Surface Science. 2020;522:146471. https://doi.org/10.1016/j.apsusc.2020.146471
  • Gao W., Dang Z.C., Liu F.S., Wang S., Zhang D.W., Yan M. X. Preparation of antistatic epoxy resin coatings based on double comb-like quaternary ammonium salt polymers. RSC advances. 2020;10(71):43523-43532. https://doi.org/10.1039/d0ra07479a
  • Bao L., Lei J., Wang J. Preparation and characterization of a novel antistatic poly (vinyl chloride)/quaternary ammonium based ion-conductive acrylate copolymer composites. Journal of Electrostatics. 2013; 71(6):987-993. https://doi.org/10.1016/j.elstat.2013.09.001
  • Yang W., Cao Y., Ju H., Wang Y., Jiang Y., Geng T. Amide Gemini surfactants linked by rigid spacer group 1, 4-dibromo-2-butene: Surface properties, aggregate and application properties. Journal of Molecular Liquids. 2021;326: 115339. https://doi.org/10.1016/j.molliq.2021.115339
  • Fan Y., Shen J., Xu H. Synthesis and dilute aqueous solution properties of cationic antistatic surfactant functionalized with hydroxyl and ether groups. Tenside Surfactants Detergents. 2022. https://doi.org/10.1007/s00396-014-3233-9
  • Si J., Tang P. Influence of antistatic agent encapsulated into functionalized mesoporous silica on antistatic properties of polystyrene. International Journal of Polymeric Materials and Polymeric Biomaterials. 2018;67(12):745-753. https://doi.org/10.1080/00914037.2017.1376201
  • Kuo Y.C., Lee C.H., Rajesh R. Iron oxide-entrapped solid lipid nanoparticles and poly (lactide-co-glycolide) nanoparticles with surfactant stabilization for antistatic application. Journal of Materials Research and Technology. 2019; 8(1):887-895. https://doi.org/10.1016/j.jmrt.2018.04.022
  • El-Dessouky H.M., Lawrence C.A. Nanoparticles dispersion in processing functionalized PP/TiO2 nanocomposites: distribution and properties. Journal of Nanoparticle Research. 2011;13(3):1115-1124. https://doi.org/10.1007/s11051-010-0100-6
  • Wang Y., Zhang C., Du Z., Li H., Zou W. Synthesis of silver nanoparticles decorated MWCNTs and their application in antistatic polyetherimide matrix nanocomposite. Synthetic metals. 2013; 182:49-55. https://doi.org/10.1016/j.synthmet.2013.09.006
  • Li R., Si J., Tang P. Enhancement of electrostatic charge dissipation properties of polymers by a sustained‐release effect of mesoporous silica nanoparticles. Polymers for Advanced Technologies. 2016;27(5):615-622. https://doi.org/10.1002/pat.3728
  • Kumar A.P., Depan D., Tomer N.S., Singh R.P. Nanoscale particles for polymer degradation and stabilization — trends and future perspectives. Progress in polymer science. 2009; 34(6):479-515. https://doi.org/10.1016/j.progpolymsci.2009.01.002
  • Chiu C.W., Lin C.A., Hong P.D. Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. Journal of Polymer Research. 2011;18(3):367-372. https://doi.org/10.1007/s10965-010-9426-0
  • Hassan M.M., Koyama K. Multifunctional acrylic fibers prepared via in-situ formed silver nanoparticles: Physicochemical, UV radiation protection, and antistatic properties. Dyes and Pigments. 2018;159:517-526. https://doi.org/10.1016/j.dyepig.2018.07.013
  • Zhang J., Zuo J., Yuan W., Fu W., Zhang J., Wei C. Synthesis and characterization of silver nanoparticle-decorated coal gasification fine slag porous microbeads and their application in antistatic polypropylene composites. Powder Technology. 2022; 410:117891. https://doi.org/10.1016/j.powtec.2022.117891
  • Wasim M., Khan M.R., Mushtaq M., Naeem A., Han M., Wei, Q. Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics. Coatings. 2020;10(4):364. https://doi.org/10.3390/coatings10040364
  • Thennakoon C.A., Rajapakshe R.B.S.D., Rajapakse R.M.G., Rajapakse S. Anti-stain and durable superhydrophobic/ antistatic dual functionality surface for fabric materials based on F-ZnO/TiO2 composite. Journal of Sol-Gel Science and Technology. 2022;101(3):529-538. https://doi.org/10.1007/s10971-022-05734-y
  • Mikhailov M.M., Goronchko, V.A. Changes in the Electrical Conductivity of Polypropylene Modified with Nanoparticles of Oxide Compounds. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2022; 16(3):343-346. https://doi.org/10.1134/S1027451022030284
  • Yousefi E., Dolati A., Najafkhani H. Preparation of robust antistatic waterborne polyurethane coating. Progress in Organic Coatings. 2020;139: 105450. https://doi.org/10.1016/j.porgcoat.2019.105450
  • Shang Q., Hao S., Wang W., Fu D., Ma T. Preparation and characterization of antistatic coatings with modified BaTiO3 powders as conductive fillers. Journal of adhesion science and technology. 2013;27(24):2642-2652. https://doi.org/10.1080/01694243.2013.798926
  • Amde M., Liu J.F., Pang L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environmental science & technology. 2015;49(21):12611-12627. https://doi.org/10.1021/acs.est.5b03123
  • Coleman D., Gathergood N. Biodegradation studies of ionic liquids. Chemical Society Reviews. 2010;39(2):600-637. https://doi.org/10.1039/b817717c
  • Welton T. Ionic liquids in green chemistry. Green Chemistry. 2011;13(2):225-225. https://doi.org/10.1039/C0GC90047H
  • Sadjadi S. Magnetic (poly) ionic liquids: A promising platform for green chemistry. Journal of Molecular Liquids. 2021;323:114994. https://doi.org/10.1016/j.molliq.2020.114994
  • Kapitanov I.V., Jordan A., Karpichev Y., Spulak M., Perez L., Kellett A., Gathergood N. Synthesis, self-assembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of L-phenylalanine-derived surface-active ionic liquids. Green Chemistry. 2019; 21(7):1777-1794. https://doi.org/10.1039/C9GC00030E
  • Chiappe C., Marra A., Mele A. Synthesis and applications of ionic liquids derived from natural sugars. Carbohydrates in sustainable development II. 2010; 295: 177-195. https://doi.org/10.1007/128_2010_47
  • Gomes J.M., Silva S.S., Reis R.L. Biocompatible ionic liquids: fundamental behaviours and applications. Chemical Society Reviews. 2019;48(15):4317-4335. https://doi.org/10.1039/C9CS00016J
  • Chen J., Xie F., Li X., Chen L. Ionic liquids for the preparation of biopolymer materials for drug/gene delivery: a review. Green Chemistry. 2018;20(18):4169-4200. https://doi.org/10.1039/C9CS00016J
  • Mudzakir A., Jafarian M. B., Widyaningsih M., Nandiyanto A.B.D., Ragadhita R. Fatty Acid Based Ionic Liquids: A New Antistatic Agent For Floor Coating. Moroccan Journal of Chemistry. 2022;10:591-605. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.33146
  • Tsurumaki A., Iwata T., Tokuda M., Minami H., Navarra M.A., Ohno H. Polymerized ionic liquids as durable antistatic agents for polyether-based polyurethanes. Electrochimica Acta. 2019; 308:115-120. https://doi.org/10.1016/j.electacta.2019.04.031
  • Tsurumaki A., Tajima S., Iwata T., Scrosati B., Ohno H. Evaluation of ionic liquids as novel antistatic agents for polymethacrylates. Electrochimica Acta. 2017; 248:556-561. https://doi.org/10.1016/j.electacta.2017.07.181
  • Seki Y. O. L. D. A. Ş., Yıldız N., İnce M., Şengül S., Sever K., Sarıkanat M., Dikici, T. U. N. C. A. Y. The investigation of antistatic effects of 1-ethyl-2, 3-dimethylimidazolium ethyl sulphate for acrylic-based polymer film. Plastics, Rubber and Composites. 2016; 45(8):362-367. https://doi.org/10.1080/14658011.2016.1201258
  • Ueno K., Fukai T., Nagatsuka T., Yasuda T., Watanabe M. Solubility of poly (methyl methacrylate) in ionic liquids in relation to solvent parameters. Langmuir. 2014; 30(11): 3228-3235. https://doi.org/10.1021/la404797g
  • Kosiński S., Gonsior M., Krzyżanowski P., Rykowska I. New Hybrid Polyurea-Polyurethane Elastomers with Antistatic Properties and an Influence of Various Additives on Their Physicochemical Properties. Molecules. 2021;26(19):5778. https://doi:10.3390/molecules26195778
  • Stoppa A., Zech O., Kunz W., Buchner R. The Conductivity of Imidazolium-Based Ionic Liquids from (−35 to 195) oC. A. Variation of Cation’s Alkyl Chain. Journal of Chemical Engineering Data. 2010; 55(5):1768–1773. https://doi.org/10.1021/je900789j
  • Rahman, M.B.A., Jumbri K., Basri M., Abdulmalek E., Sirat K., Salleh A.B. Synthesis and Physico-Chemical Properties of New Tetraethylammonium-Based Amino Acid Chiral Ionic Liquids. Molecules. 2010;15:2388–2397. https://doi.org/10.3390/molecules15042388
  • Liang X., Deng Y., Li S., Wu J., Zhang H., Zhang Z. Waterborne polyurethane‐acrylate‐polyaniline: Interfacial hydrogen bonding for enhancing the antistatic, damping, and mechanical properties. Polymers for Advanced Technologies. 2022; 33(9): 2667-2681. https://doi.org/10.1002/pat.5722
  • Zhu A., Wang H., Sun S., Zhang C. The synthesis and antistatic, anticorrosive properties of polyaniline composite coating. Progress in Organic Coatings. 2018;122:270-279. https://doi.org/10.1016/j.porgcoat.2018.06.004
  • Gao X., Chu F. Fabrication of High Conductivity Polyurethane/Polyaniline Composite Coating Based on In-Situ Polymerization. In Advances in Graphic Communication, Printing and Packaging. Springer, Singapore. 2019; 958-963. https://doi.org/10.1007/978-981-13-3663-8_129
  • Cao Y., Wang L., Gao Y., Sun T.J., Zhou Y., Hu H.Q., Dong X. Morphology and electric conductivity controlling of in situ polymerized poly (decamethylene dodecanoamide)/polyaniline composites. Journal of Applied Polymer Science. 2018;136(6):47041. https://doi.org/10.1002/app.47041
  • Jose B., Sambhudevan S., Shankar B. Mechanical and Conducting Properties of Polyaniline Doped Natural Rubber Nanocomposites. Materials Today: Proceedings. 2019; 18:4901-4905. https://doi.org/10.1016/j.matpr.2019.07.481
  • Mirmohseni A., Rastgar M., Olad A. PANI‐chitosan‐TiO2 ternary nanocomposite and its effectiveness on antibacterial and antistatic behavior of epoxy coating. Journal of Applied Polymer Science. 2019;136(23):47629. https://doi.org/10.1002/app.47629
  • Mirmohseni A., Azizi M., Seyed Dorraji M.S.A promising ternary nanohybrid of Copper@ Zinc oxide intercalated with polyaniline for simultaneous antistatic and antibacterial applications. Journal of Coatings Technology and Research. 2019; 16(38):1411-1422. https://doi.org/10.1007/s11998-019-00223-4
Еще
Статья научная