Agrobacterium mediated transformation of Fld and Gus genes into canola for salinity stress

Автор: Niapour Nazila, Baghizadeh Amin, Tohidfar Masoud, Pourseyedi Shahram

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.9, 2013 года.

Бесплатный доступ

Salinity is one of the major abiotic stress which limits wide spread canola cultivation. One way to overcome this problem could be transfection, to produce tolerable species. Cotyledonary and hypocotyls explants obtained from 4 and 7 days old seedling of Elite and RJS003 varieties were utilized in this study. Genetic transformation was implemented through Agrobacterium tumefaciens LBA4404 containing PBI121 plasmid and Agrobacterium tumefaciens C58, LBA4404, AGL0 and EHA 101 strains which contain P6u- ubi- fvt1 construct. The T-DNA region of P6u- Ubi- Fvt1 plasmid included HPT (Hygromycin phosphotransferase) plant selectable marker and Fld (flavodoxin) gene. PBI121 plasmid had NptII (Neomycin phosphotransferase) plant Selectable marker and β-glucuronidase (GUS) reporter genes. Transfected explants were analyzed by PCR and histochemical assay for Fld and Gus genes, respectively. Our data indicated that the cotyledonary explants of both cultivars were incompetent to be infected with Fld gens. However, the transformation in Elite hypocotyls explants with Agrobacterium tumefaciens C58 and LBA 4404 strains were confirmed through PCR product and histochemical evaluation for Fld and GUS genes, respectively. Therefore, the result of this manuscript may to certain degree fulfill the endeavor appointed to this oilseed.

Еще

Salinity, brassica napus l, transformation, agrobacterium tumefaciens, fld, gus

Короткий адрес: https://sciup.org/14323754

IDR: 14323754

Список литературы Agrobacterium mediated transformation of Fld and Gus genes into canola for salinity stress

  • Al-Naggar AMM, Shabana R, Rady MR, Ghanem SA, Saker MM, Reda AA, et al. (2010) In vitro callus initiation and regeneration and in some canola varieties. International Journal of Academic Research. 2(6).
  • Alam khan MM, Hassan L, Ahmad SD, Shad AH, Batool F. (2009) In vitro regeneration potentiality of oil seed Brassica genotypes with differential BAP concentration. Pak J Bot. 41(3): 1233-1239.
  • Ali H, Ali Z, Ali H, Mehmood S, Ali W. (2007) In vitro regeneration of Brassica napus L., cultivars (Star, Cyclone and Westar) from hypocotyles and cotyledonary leaves. Pak J Bot. 39(4): 1251-1256.
  • Altenbach SB, Kuo CC, Staraci LC, Pearson KW, Wainwright C, Georgescu A, Townsend J.(1992) Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol. 18: 235-245.
  • Bano R, Khan MH, Khan RS, Hamid Rashid H, Swati ZA. (2010) Development of an efficient regeneration protocol for three Genotypes of Brassica juncea. Pak J Bot. 42(2): 963-969.
  • Cardoza V, Stewart CN. (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep. 21(6): 599-604.
  • De Block M, De Brower D, Tenning P. (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694-701.
  • de la Riva GA, Cabrera JG, Pardo CA, Padron RV. (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electronic Journal of Biotechnology. 1(3).
  • Dellaporta SL, Wood J, Hicks JB. (1983) A plant DNA minipreparation: Version II. Plant Mol Biol. 1: 19-21.
  • FAO. (2005) Management of irrigation-induced salt-affected soils.
  • Flowers TJ. (2004) Improving crop salt tolerance. J Exper Botany. 55: 307-319.
  • Fry J, Barnason A, Horsch RB. (1987) Transformation of Brassica napus with Agrobacterium based vectors. Plant Cell Rep. 6: 321-325.
  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR. (2008) Recent advances in salt stress biology -a review. Biotechnology and Molecular Biology 3(1): 8-13.
  • Jefferson RA. (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep. 5: 387-405.
  • Jones HD, Doherty A, Wu H. (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods. 1: 5.
  • Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC. (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA. 89: 2624-2628.
  • Mashayekhi M, Shakib AM, Ahmad-Raji M, Ghasemi Bezdi K. (2008) Gene transformation potential of commercial canola (Brassica napus L.) cultivars using cotyledon and hypocotyl explants. African Journal of Biotechnology 7(24): 4459-4463.
  • Moghaieb REA, El-Awady M A, El Mergawy RG, Youssef SS, El-Sharkawy AM. (2006) A reproducible protocol for regeneration and transformation in canola (Brassica napus L.). African Journal of Biotechnology. 5 (2): 143-148.
  • Moravcikova J, Madyagol M, Galova Z, Vaculkova E, Libantova J. (2009) Optimalisation of genetic modification of rapeseed. Acta fytotechnica et zootechnica. 479-485.
  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 15: 379-473.
  • Pua EC, Palta AM, Nagy F, Chua NH. (1987) Transgenic plants of Brassica napus L. Biotechnology and Molecular Biology. 5: 815-817.
  • Radke SE, Andrews BM, Moloney MM, Crouch ML, Krid JC, Knauf VC. (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet. 75: 685-694.
  • Redondo FJ, de la Pena TC, Morcillo CN, Lucas MM, Pueyo JJ. (2009) Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiol. 149(2): 1166-1178.
  • Stewart CNJ, Adang MJ, All JA, Raymer PL, Ramachandran S, Parrott WA. (1996) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensiscryIAC gene. Plant Physiol. 112: 115-120.
  • Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, et al. (2006) Functional replacement of Ferredoxin by a Cyanobacterial Flavodoxin in Tobacco confers broad-range stress tolerance. The Plant Cell. 18: 2035-2050.
  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA. (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 23(12): 780-789.
  • Yamaguchi T, Blumwald E. (2005) Developing salt-tolerant crop plants: challenges and opportunities. TRENDS in Plant Science 10(12): 615-620
  • Zhang Y, Singh MB, Bhalla PL. (1999) Genetic transformation of Australian cultivars of oilseed rape (Brassica napus L.). 10th international Rapeseed congress, Canberra, Australia.
  • Zhang Y, Xu J, Han L, Wei W, Guan Z, Cong L and Chai T (2006) Efficient shoot regeneration and Agrobacterium‐mediated transformation of Brassica juncea. Plant Mol. Bio. Rep. 24: 255a‐255i.
  • Zurbriggen M, Tognetti VB, Valle EM, Carrillo N. (2007) Cyanobacterial Flavodoxin provides multiple Stress tolerance. ISB News Report.
Еще
Статья научная