Ab initio calculation of vacancy formation energy in antiperovskite Mn3GaC

Бесплатный доступ

In this article, we presented the ab initio calculation of vacancy formation energy according to Schottky in the alloy Mn3GaC. Calculations were carried out in the frameworks of the density functional theory (DFT), implemented in VASP software package. For approximation of the exchange-correlation functional, the generalized gradient approximation in the Perdew-Burke-Ernzerhof formulation was used. It was shown that for the alloy under research, the most energetically favorable formation of a vacancy is in the place of C atom; formation of vacancies in places of Mn atoms is also beneficial, whereas the Ga vacancies are energetically unfavorable. Also, the concentration of vacancies at a finite temperature was calculated. It was shown that Mn and C vacancies have almost identical equilibrium concentration at a nonzero temperature; at that, the concentration of Ga vacancies is negligibly small. In addition, elastic moduli for various magnetic orderings (ferromagnetic, noncollinear, and antiferromagnetic) in the alloy under research were calculated. Using the quasi-harmonic Debye model, the Helmholtz free energy curves were constructed. Using these curves, it was also shown that Schottky monovacancies do not destabilize the ferromagnetic phase. Stability of the ferromagnetic phase is due to the large contribution of magnetic entropy to the Helmholtz free energy for the alloy under research.

Еще

Vacancy, vacancy formation energy, helmholtz free energy, ab initio

Короткий адрес: https://readera.org/147232816

IDR: 147232816   |   DOI: 10.14529/mmph190208

Список литературы Ab initio calculation of vacancy formation energy in antiperovskite Mn3GaC

  • Гольдшмидт, Х.Дж. Сплавы внедрения / Х.Дж. Гольдшмидт. - М.: Мир, 1971. - Вып. 1. - 424 с.; М.: Мир, 1971. - Вып. 2. - 464 с.
  • Fruchart, D. Magnetic Studies of the Metallic Perovskite-Type Compounds of Manganese / D. Fruchart, E.F. Bertaut // Journal of the Physical Society of Japan. - 1978. - Vol. 44, no. 3. - P. 781-791.
  • Kaneko, T. Pressure Effect on the Magnetic Transition Temperatures in the Intermetallic Compounds Mn3MC (M=Ga, Zn and Sn) / T. Kaneko, T. Kanomata, K. Shirakawa // Journal of the Physical Society of Japan. - 1987. - Vol. 56, no. 11. - P. 4047-4055.
  • Transport properties of the intermetallic compounds Mn3Ga1-xZnxC / T. Harada, T. Makabe, T. Kanomata, T. Kaneko // Journal of Magnetism and Magnetic Materials. - 1992. - Vol. 104-107. - Part 3. - P. 1955-1956.
  • Giant magnetoresistance in the intermetallic compound Mn3GaC / K. Kamishima, T. Goto, H. Nakagawa et al. // Phys. Rev. B. - 2000. - Vol. 63. - P. 024426.
  • Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect / K. Takenaka, K. Asano, M. Misawa, H. Takagi // Appl. Phys. Lett. - 2008. - Vol. 92. - P. 011927.
  • Gschneidner Jr., K.A. Recent developments in magnetocaloric materials / K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol // Rep. Prog. Phys. - 2005. - Vol. 68, no. 6. - P. 1479-1539.
  • Yu, M.-H. Large magnetic entropy change in the metallic antiperovskite Mn3GaC / M.-H. Yu, L.H. Lewis, A.R. Moodenbaugh // J. Appl. Phys. - 2003. - Vol. 93. - Issue 12. - P. 10128.
  • Çakır Ö. Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements / Ö. Çakır, M. Acet // Appl. Phys. Lett. - 2012. - Vol. 100. - Issue 20. - P. 202404.
  • Neutron diffraction study of the magnetic-field-induced transition in Mn3GaC / Ö. Çakır, M. Acet, M. Farle, A. Senyshyn // J. Appl. Phys. - 2014. - Vol. 115. - Issue 4. - P. 043913.
  • Phase-separated magnetic ground state in Mn3Ga0.45Sn0.55C / E.T. Dias, K.R. Priolkar, A.K. Nigam et al. // Phys. Rev. B. - Vol. 95. - P. 144418.
  • Effect of composition on magnetocaloric properties of Mn3Ga(1-x)SnxC / E.T. Dias, K.R. Priolkar, Ö. Çakır et al. // J. Appl. Phys. - 2015. - Vol. 117, Issue 12. - P. 123901.
  • Perdew, J.P. Generalized Gradient Approximation Made Simple / J.P. Perdew, K. Burke, M. Enzerhof // Phys. Rev. Lett. - 1996. - Vol. 77. - P. 3865.
  • Monkhorst, H.J. Special points for Brillouin-zone integrations / H.J. Monkhorst, J.D. Pack // Phys. Rev. B. - 1976. - Vol. 13. - P. 5188.
  • Blanco, M.A. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model / M.A. Blanco, E. Francisco, V. Luaña // Computer Physics Communications. - 2004. - Vol. 158. - P. 57-72.
Еще
Статья научная