A Survey of Artificial Life and Nature-inspired Techniques in Computer Graphics and Visualization

Автор: Bushra Ferdousi, Tim Mc Graw

Журнал: International Journal of Image, Graphics and Signal Processing @ijigsp

Статья в выпуске: 1 vol.16, 2024 года.

Бесплатный доступ

Artificial life and other nature-inspired techniques have been applied to many problems in computer graphics. Some of these techniques are based on observations of organic systems, such as slime molds and flocking animals, and can mimic some of their behaviors and structures. The emergent behavior of these systems can improve the realism of procedurally-generated assets used in computer graphics applications, such as animation and texture maps. In this work, we provide a survey of these techniques and applications, including cellular automata, differential growth, reaction-diffusion, and Physarum. The techniques are compared and contrasted, and the common themes and patterns are elucidated to create a taxonomy which can be useful to researchers studying existing techniques and developing new ones.

Еще

Computer graphics, artificial life, nature-inspired techniques, organic systems, emergence, procedural modeling, animation, texture maps

Короткий адрес: https://sciup.org/15018852

IDR: 15018852   |   DOI: 10.5815/ijigsp.2024.01.01

Список литературы A Survey of Artificial Life and Nature-inspired Techniques in Computer Graphics and Visualization

  • Turing and A. , "The chemical basis of morphogenesis," Bulletin of mathematical biology, vol. 52, no. 0092-8240, pp. 153-197, 1990.
  • Fowler, D. R. a. M. H. a. P. and P. , "Modeling seashells," in Proceedings of the 19th annual conference on Computer graphics and interactive techniques, 1992, pp. 379-387.
  • Kondo, S. a. A. and R. , "A reaction--diffusion wave on the skin of the marine angelfish Pomacanthus," Nature, vol. 376, pp. 765-768, 1995.
  • Murray and J. D. , Mathematical biology: I. An introduction, Springer, 2002.
  • Murray, J. D. a. M. and M. , "Pigmentation pattern formation on snakes," Journal of theoretical biology, vol. 149, pp. 339-360, 1991.
  • Witkin, A. a. K. and M. , "Reaction-diffusion textures," in Proceedings of the 18th annual conference on computer graphics and interactive techniques, 1991, pp. 299-308.
  • Turk and G. , "Generating textures on arbitrary surfaces using reaction-diffusion," Acm Siggraph Computer Graphics, vol. 25, pp. 289-298, 1991.
  • Sanderson, A. R. a. K. R. M. a. J. and C. R. a. Y. L. , "Advanced reaction-diffusion models for texture synthesis," Journal of Graphics Tools, vol. 11, pp. 47-71, 2006.
  • Fan, D. a. L. S. a. W. and Y. , "Fruit ring rot simulation based on reaction-diffusion model," in 2013 International Conference on Virtual Reality and Visualization, IEEE, 2013, pp. 199-205.
  • Chi, M.-T. a. L. W.-C. a. H. and S.-H. , "Image stylization using anisotropic reaction diffusion," The Visual Computer, vol. 32, pp. 1549-1561, 2016.
  • Chen, Y. a. Y. W. a. P. and T. , "On learning optimized reaction diffusion processes for effective image restoration," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 5261-5269.
  • Chen, Y. a. P. and T. , "Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration," IEEE transactions on pattern analysis and machine intelligence, vol. 39, pp. 1256-1272, 2016.
  • T. McGraw, "Generalized reaction-diffusion textures," Computers & Graphics, vol. 32, pp. 82-92, 2008.
  • Kim, T. a. L. and M. , "Stable advection-reaction-diffusion with arbitrary anisotropy," Computer Animation and Virtual Worlds, vol. 18, pp. 329-338, 2007.
  • McCabe and J. , "Cyclic symmetric multi-scale Turing patterns," in Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture, 2010, pp. 387-390.
  • Witten, T. A. a. S. and L. M. , "Diffusion-limited aggregation," Physical review B, vol. 27, p. 5686, 1983.
  • Kaandorp, J. A. a. K. and J. E. , The algorithmic beauty of seaweeds, sponges and corals, Springer Science & Business Media, 2001.
  • Douezan, S. a. B.-W. and F. , "Active diffusion-limited aggregation of cells," Soft Matter, vol. 8, pp. 784-788, 2012.
  • A. Lomas, "Aggregation: Complexity out of simplicity," in ACM SIGGRAPH 2005 Sketches, 2005, pp. 98-es.
  • J. A. a. K. J. E. Kaandorp, The algorithmic beauty of seaweeds, sponges and corals, Springer Science \& Business Media, 2001.
  • Bourke and P. , "Constrained diffusion-limited aggregation in 3 dimensions," Computers & Graphics, vol. 30, pp. 646-649, 2006.
  • Desbenoit, B. a. G. E. a. A. and S. , "Simulating and modeling lichen growth," in Computer Graphics Forum, vol. 23, Wiley Online Library, 2004, pp. 341-350.
  • Kim, T. a. H. M. a. L. and M. C. , "A hybrid algorithm for modeling ice formation," in Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2004, pp. 305-314.
  • Camp and W. G. , "The structure and activities of myxomycete plasmodia," Bulletin of the Torrey Botanical Club, pp. 307-335, 1937.
  • Braund, E. a. M. and E. , "Music with unconventional computing: towards a step sequencer from plasmodium of physarum polycephalum," in International Conference on Evolutionary and Biologically Inspired Music and Art, Springer, 2015, pp. 15-26.
  • Braund, E. a. S. R. a. M. and E. , "Physarum-based memristors for computer music}," in Advances in Physarum Machines, Springer, 2016, pp. 755-775.
  • Barnett and H. a. o. , "Many-Headed: Co-creating with the Collective," River Publishers, 2019.
  • Schubert, T. a. M. M. a. D. M. a. A. and A. , "Bodymetries. A Generative Projection Environment for Slime Mould and Humans," in Advances in Physarum Machines, Springer, 2016, pp. 801-811.
  • Bonifaci, V. a. M. K. a. V. and G. , "Physarum can compute shortest paths," Journal of theoretical biology, vol. 309, pp. 121-133, 2012.
  • Tero, A. a. T. S. a. S. T. a. I. K. a. B. D. P. a. F. M. D. a. Y. K. a. K. R. a. N. and T. , "Rules for biologically inspired adaptive network design," Science, vol. 327, pp. 439-442, 2010.
  • Jones, J. a. A. and A. , "Computation of the travelling salesman problem by a shrinking blob," Natural Computing, vol. 13, pp. 1-16, 2014.
  • Zhu, L. a. A. M. a. K. S.-J. a. H. and M. , "Amoeba-based computing for traveling salesman problem: Long-term correlations between spatially separated individual cells of Physarum polycephalum," Biosystems, vol. 112, pp. 1-10, 2013.
  • Elek, O. a. B. J. N. a. P. J. X. a. F. and A. G. , "Polyphorm: Structural Analysis of Cosmological Datasets via Interactive Physarum Polycephalum Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 27, pp. 806-816, 2020.
  • Jones and J. , "Characteristics of pattern formation and evolution in approximations of Physarum transport networks," Artificial life, vol. 16, pp. 127-153, 2010.
  • S. Jenson, "Physarum," 2019.
  • Arsiliath, "Intro to Compute Shaders," 2019.
  • T. McGraw and F. B. , "Red versus blue: Slime mold civil war," in SIGGRAPH Asia 2021 Posters, 2021, pp. 1-2.
  • Reynolds and C. W. , "Flocks, herds and schools: A distributed behavioral model," in Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 1987, pp. 25-34.
  • Thalmann, D. a. H. C. a. L. S. a. O. H. a. R. S. a. S. and D. , "Crowd and group animation," in ACM SIGGRAPH 2004 course notes, 2004, p. 34.
  • Qin, C. Y. a. C. M. a. A. L. M. a. Q. and D. , "HeartBees: Visualizing Crowd Affects," in 2020 IEEE VIS Arts Program (VISAP), IEEE, 2020, pp. 1-8.
  • Hartman, C. a. B. and B. , "Autonomous boids," Computer Animation and Virtual Worlds, vol. 17, pp. 199-206, 2006.
  • A. V. Moere, "Time-varying data visualization using information flocking boids," in IEEE Symposium on Information Visualization, IEEE, 2004, pp. 97--104.
  • Dodgson, N. A. a. S. and J. , "Boids: learning vector arithmetic through animation," in ACM SIGGRAPH 2018 Educator's Forum, 2018, pp. 1-2.
  • Caporal, C. a. D. L. C. a. L. M. a. F. A. and R. , "Boidance: Dancing the Kinesphere with Virtual Reality, Boids and Genetic Algorithms.," in 10th International Conference on Digital and Interactive Arts, 2021, pp. 1-3.
  • Choi, T. J. a. A. and C. W. , "A Swarm Art Based on Evolvable Boids with Genetic Programming," Journal of Advances in Information Technology Vol, vol. 8, 2017.
  • Greenfield, G. a. M. and P. , "Swarm art," Leonardo, vol. 47, pp. 5-7, 2014.
  • Sayama and H. , "Swarm chemistry," Artificial life, vol. 15, pp. 105-114, 2009.
  • Jeffery Ventrella, "Clusters," 2017.
  • Sharon, E. a. M. M. a. S. and H. L. , "Leaves, flowers and garbage bags: Making waves," American Scientist, vol. 92, pp. 254-261, 2004.
  • A. Lomas, "Cellular forms: an artistic exploration of morphogenesis," in SIGGRAPH Studio, 2014, pp. 1-1.
  • A. Lomas, "Morphogenetic Creations: Exhibiting and collecting digital art," in Museums and Digital Culture, Springer, 2019, pp. 353-365.
  • A. Lomas, "Morphogenetic vase forms," 2019.
  • Yu and E. , "Interactive differential growth simulation for design," 2020.
  • S. Nervous, "Floraform – an exploration of differential growth," 2015.
  • I. Smith and A. R. , "Introduction to and survey of cellular automata or polyautomata theory," Automata, Languages, Development, pp. 405-422, 2017.
  • Sarkar and P. , "A brief history of cellular automata," Acm computing surveys (csur), vol. 32, pp. 80-107, 2000.
  • Bhattacharjee, K. a. N. N. a. R. S. a. D. and S. , "A survey of cellular automata: types, dynamics, non-uniformity and applications," Natural Computing, vol. 19, pp. 433-461, 2020.
  • Rafler and S. , "Generalization of Conway's" Game of Life" to a continuous domain-SmoothLife," arXiv preprint arXiv:1111.1567, 2011.
  • Johnson, L. a. Y. G. N. a. T. and J. , "Cellular automata for real-time generation of infinite cave levels," in Proceedings of the 2010 Workshop on Procedural Content Generation in Games, 2010, pp. 1-4.
  • Ashlock and D. , "Evolvable fashion-based cellular automata for generating cavern systems," in 2015 IEEE Conference on Computational Intelligence and Games (CIG), IEEE, 2015, pp. 306--313.
  • Ashlock, D. a. B. and L. , "Rescalable, replayable maps generated with evolved cellular automata," Acta Physica Polonica (B), Proceedings Supplement, vol. 9, pp. 13--22, 2016.
  • Ashlock, D. a. K. and M. , "Evolving diverse cellular automata based level maps," in International Conference in Software Engineering for Defence Applications, Springer, 2018, pp. 10--23.
  • Gellel, A. a. S. and P. , "A hybrid approach to procedural generation of roguelike video game levels," in International Conference on the Foundations of Digital Games, 2020, pp. 1-10.
  • Moere, A. V. a. C. and J. J. a. D. A. , "Data clustering and visualization using cellular automata ants," in Australasian Joint Conference on Artificial Intelligence, Springer, 2006, pp. 826-836.
  • Gobron, S. a. C. and N. , "3D surface cellular automata and their applications," The Journal of Visualization and Computer Animation, vol. 10, pp. 143-158, 1999.
  • Gobron, S. a. C. and N. , "Simulation of peeling using 3d-surface cellular automata," in Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001, IEEE, 2001, pp. 338-347.
  • Tarakanov, A. a. A. and A. , "Virtual clothing in hybrid cellular automata," Kybernetes, 2002.
  • Li, C. a. L. J. a. H. L. a. H. and D. , "Visualization and simulation model of underground mine fire disaster based on Cellular Automata," Applied Mathematical Modelling, vol. 39, pp. 4351-4364, 2015.
  • Boldea and C.-R. , "A particle cellular automata model for fluid simulations," Annals of the University of Craiova-Mathematics and Computer Science Series, vol. 36, pp. 35-41, 2009.
  • Topa, P. a. M. and P. , "GPGPU implementation of cellular automata model of water flow," in International Conference on Parallel Processing and Applied Mathematics, Springer, 2011, pp. 630-639.
  • Devlin, J. a. S. and M. D. , "Probabilistic cellular automata for granular media in video games," The Computer Games Journal, vol. 10, pp. 111-120, 2021.
  • Gobron, S. a. {. A. a. B. H. a. T. and D. , "GPGPU computation and visualization of three-dimensional cellular automata," The Visual Computer, vol. 27, pp. 67-81, 2011.
  • Krawczyk and R. J. , "Architectural interpretation of cellular automata," 2002.
  • Devetakovic, M. a. P. L. a. D. M. a. M. and B. , "Les folies cellulaires an exploration in architectural design using cellular automata," in 12th Generative Art Conference, 2009, pp. 181-192.
  • Slackermanz, "Understanding Multiple Neighborhood Cellular Automata," 2021.
  • softologyblog, "Multiple Neighborhoods Cellular Automata," 2018.
  • Fisch, R. a. G. J. a. G. and D. , "Cyclic cellular automata in two dimensions," in Spatial stochastic processes, Springer, 1991, pp. 171-185.
  • Reiter and C. A. , "Medley of spirals from cyclic cellular automata," Computers & Graphics, vol. 34, pp. 72-76, 2010.
  • Heaton and J. , "Evolving continuous cellular automata for aesthetic objectives," Genetic Programming and Evolvable Machines, vol. 20, pp. 93-125, 2019.
  • Chan and B. W.-C. , "Lenia: Biology of Artificial Life," Complex Systems, vol. 28, 2019.
  • Chan and B. W.-C. , "Lenia and expanded universe," arXiv preprint arXiv:2005.03742, 2020.
  • Safia, D. a. O. D. a. C. and B. M. , "Image segmentation using continuous cellular automata," in 2011 10th International Symposium on Programming and Systems, IEEE, 2011, pp. 94-99.
  • Mordvintsev, A. a. R. E. a. N. E. a. L. and M. , "Growing neural cellular automata," Distill, vol. 5, p. e23, 2020.
  • Sandler, M. a. Z. A. a. L. L. a. M. A. a. R. and E. a. o. , "Image segmentation via cellular automata," arXiv preprint arXiv:2008.04965, 2020.
  • Mordvintsev, A. a. N. E. a. R. and E. , "Texture Generation with Neural Cellular Automata," arXiv preprint arXiv:2105.07299, 2021.
  • Mordvintsev, A. a. N. and E. , "NCA: Texture Generation with Ultra-Compact Neural Cellular Automata," arXiv preprint arXiv:2111.13545, 2021.
  • Earle, S. a. S. J. a. F. M. C. a. N. S. a. T. and J. , "Illuminating diverse neural cellular automata for level generation," in Proceedings of the Genetic and Evolutionary Computation Conference, 2022, pp. 68-76.
  • Sudhakaran, S. a. G. D. a. L. S. a. K. A. a. N. E. a. G. C. a. R. and S. , "Growing 3d artefacts and functional machines with neural cellular automata," arXiv preprint arXiv:2103.08737, 2021.
  • Greenfield, G. a. M. and P. , "Ant-and ant-colony-inspired alife visual art," Artificial life, vol. 21, pp. 293-306, 2015.
  • S. A. a. F. J. D. H. Morehead, "Foraging behavior and morphology: seed selection in the harvester ant genus, Pogonomyrmex," Oecologia, vol. 114, pp. 548--555, 1998.
  • Greenfield and G. a. o. , "Ant paintings based on the seed foraging behavior of P. barbatus," in 2013 BRIDGES Conference Proceedings, 2013.
  • Langton and C. G. , "Studying artificial life with cellular automata," Physica D: Nonlinear Phenomena, vol. 22, pp. 120-149, 1986.
  • Greenfield and G. R. , "Abstract overlays using a transport network model," in Proceedings of Bridges 2011: Mathematics, Music, Art, Architecture, Culture, 2011, pp. 45-50.
Еще
Статья научная