The influence of the structural characteristics of polyethylene on the release of gas mixtures for extrusion processing

Бесплатный доступ

The study of thermal and mechano-thermal effects in the inert and air environment on the evolution of gas formations from high pressure polyethylene (LDPE) was carried out on a Smart RHEO 1000 capillary rheometer with the CeastView 5.94.4D software, using capillaries 5 mm in length and 1 mm in diameter. Study of composition Gas formations during the deformation of polyethylenes of different grades through the channel of a capillary viscometer. Which were characterized by structural characteristics, were carried out at shear rates close to production in the range from 50 to 300 s-1 at temperatures of 160, 190 and 220 ° C. The objects of the study were domestic thermoplastics of the following brands: LDPE 10803-020; LDPE 15803020; LPVD F-03020-S; HDPE 293-285-D, characterized by structural characteristics. It is established that the gasification during extrusion processing is promoted by the branching of polyethylene, while the degree of destruction processes increases with increasing temperature and depends on the reaction medium of the working volume of the equipment. Emerging critical shear stresses in the absence of oxidants and impurities contribute to mechano-destruction, accompanied by the formation of free radicals, which recombine to form a more branched structure of the polymer. In turn, the high temperature promotes degradation in the side parts of the polymer to form volatile products that are released from the reaction volume. It should be noted that the gassing due to thermal exposure is promoted by the air environment, but to a lesser extent than with mechano-thermal action. A smaller measure of the impact in the inertial medium is apparently associated with a limited access of oxidants to the destruction centers.

Еще

Polyethylene, structure, critical shear stresses, destruction, gas formation

Короткий адрес: https://sciup.org/140229734

IDR: 140229734   |   DOI: 10.20914/2310-1202-2017-1-237-241

Статья научная