Ensuring the thermal regime of spacecraft structures

Автор: Shatrov A.K., Rabetskaya O.I., Fisenko E.N.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Авиационная и ракетно-космическая техника

Статья в выпуске: 3 т.24, 2023 года.

Бесплатный доступ

The main requirement for the smooth operation of the spacecraft is its stable thermal regime. A particularly difficult task is to ensure a stable temperature control system of the device, taking into account strict restrictions on energy and mass costs for temperature control devices. These tasks need to be solved at every stage of the creation of satellites. At each stage, thermal calculations are carried out with the choice of optimal thermophysical parameters. This amount of work is about a tenth of all work with the satellite. The need for theoretical and experimental refinement of calculation methods is an urgent task that will significantly reduce the material and time costs of designing, testing and fine-tuning the device. Therefore, the calculation and analysis of the thermal regimes of spacecraft is an important stage in the design of satellites. Ground thermal vacuum tests are very costly, both in time and financially. The essence of the concept is to conduct only stationary thermal modes under conditions of maximum and minimum thermal loads on the satellite as a whole and its individual external elements, followed by ensuring convergence of test results with calculated results. And the confirmation of intermediate requirements to ensure the specified thermal conditions is carried out by calculation. The article considers the tasks of ensuring the thermal regime of spacecraft structures. Classification of devices used to ensure the thermal regime. Ground-based testing of the thermal regime of communication satellites during thermal vacuum tests. Ensuring the thermal regime of the communication spacecraft during ground-based electrical tests. Thermal regime of spacecraft structures during transportation from the manufacturer to the technical position.

Еще

Cubesat, formation flight, differential force, aerodynamic drag, gmat

Короткий адрес: https://sciup.org/148328184

IDR: 148328184   |   DOI: 10.31772/2712-8970-2023-24-3-550-557

Статья научная