The choice of rational parameters of beet pulp drying process in a pulsed low-pressure vibro-boiling layer

Бесплатный доступ

Beet pulp is the main sugar industry by-product obtained with traditional production technology. It has high nutritional qualities, but in its raw form it turns sour quickly so it must be preserved. One of the most common methods is drying. Drying of the beet pulp with superheated vapor of reduced pressure in the pulsating vibro-boiling layer allows to improve the quality of the finished product by lowering of the drying agent temperature, thereby retaining a significant amount of nutrients in the initial product. To study the kinetic and hydrodynamic dependencies of the drying process, an experimental apparatus was developed that makes it possible to obtain the most accurate and reproducible results. In the course of the work, a lot of experiments were carried out. Drying curves, drying rate curves and heating curves were made based on these experiments results. According to the nature of the changes the corresponding conclusions were drawn. To study the interaction of various factors affecting the beet pulp drying process, the mathematical methods of experiment planning are applied. A mathematical description of this process can be obtained empirically. At the same time, its mathematical model has the form of a regression equation, determined by statistical methods on the basis of experiments. As a result of statistical processing of experimental data, regression equations were obtained that adequately describe the beet pulp drying process in a pulsed low-pressure vibro-boiling layer in the experimental apparatus. With reference to this drying apparatus, such technological modes of its operation were determined that ensure a minimum specific energy consumption of the drying process per kilogram of evaporated moisture and the maximum drying chamber moisture stress.

Еще

Drying, beet pulp, vibro-boiling layer, vacuum, superheated steam, statistical model

Короткий адрес: https://sciup.org/140229921

IDR: 140229921   |   DOI: 10.20914/2310-1202-2017-4-31-39

Статья научная