Толерантность бактерий Pseudomonas к додецилсульфату натрия

Бесплатный доступ

Уникальная способность бактерий Pseudomonas расти в присутствии додецилсульфата натрия (SDS) позволяет использовать их при создании промышленных биопроцессов, не предполагающих стерилизации сред. Механизмы, обеспечивающие толерантность к SDS можно условно разделить на три группы: процессы агрегации, включающие продукцию защитных экзополимеров и адгезинов, модификацию мембран и синтез ферментов, расщепляющих алкилсульфаты. Образование агрегатов регулируется с помощью различных механизмов, таких как трансдукция SiaABCD и продукция циклического монофосфата дигуанозина, который инициирует синтез компонентов матрикса (углеводов, нуклеиновых кислот и белков). Также клетки могут модифицировать жирные кислоты, входящие в состав мембранных фосфолипидов, чтобы снизить растворимость компонентов билипидного слоя в ядрах мицелл додецилсульфата. Для расщепления SDS в периплазматическом пространстве и цитозоле псевдомонадами продуцируются сульфатазы, принадлежащие трем различным группам. Наличие этих ферментов обеспечивает динамическое равновесие между диффузией SDS внутрь клетки и его разложением, что предохраняет компоненты цитозоля от действия высоких концентраций додецилсульфата. Все три группы механизмов устойчивости бактерий Pseudomonas к SDS хорошо изучены, однако усиление или подавление этой толерантности путем варьирования условий культивирования все еще является трудной задачей. На сегодняшний день известно только два способа подавления толерантности к додецилсульфату, которые не приводят к немедленной гибели клеток. К ним относятся ингибирование клеточного дыхания, которое предотвращает образование агрегатов и добавление к культурам клеток легко метаболизируемого субстрата (например, углеводов), который замедляет продукцию сульфатаз.

Еще

Pseudomonas, додецилсульфат натрия, образование агрегатов, матрикс, мембранные липиды, жирнокислотный состав, сульфатаза, трансдукция siaabcd, циклический монофосфат дигуанозина, устойчивость к детергентам

Короткий адрес: https://readera.org/147236429

IDR: 147236429   |   DOI: 10.14529/food220101

Список литературы Толерантность бактерий Pseudomonas к додецилсульфату натрия

  • Poblete-Castro I., Wittmann C., Nikel P.I. Biochemistry, genetics and biotechnology of glyc-erol utilization in Pseudomonas species. Microb. Biotechnol., 2019, vol. 13, no. 1, pp. 32–53.
  • Weimer A., Kohlstedt M., Volke D.C., Nikel P.I., Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl. Microbiol. Biotechnol., 2020, vol. 104, no. 18, pp. 7745–7766.
  • Rios N.S., Pinheiro B.B., Pinheiro M.P., Bezerra R.M., Sousa dos Santos J.C., Goncalves L.R.B. Biotechnological potential of lipases from Pseudomonas: sources, properties and applications. Process Biochem., 2018, vol. 75, pp. 99–120.
  • Poblete-Castro I., Becker J., Dohnt K., dos Santos V.M., Wittmann C. Industrial biotechnol-ogy of Pseudomonas putida and related species. Appl. Microbiol. Biotechnol., 2012, vol. 93, pp. 2279–2290.
  • Flemming H.-C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol., 2010, vol. 8, pp. 623–633.
  • Friedman L., Kolter R. Two genetic loci produce distinct carbohydrate-rich structural compo-nents of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol., 2004, vol. 186, no. 14, pp. 4457–4465.
  • Borlee B.R., Goldman A.D., Murakami K., Samudrala R., Wozniak D.J., Parsek M.R. Pseu-domonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol., 2010, vol. 75, no. 4, pp. 827–842.
  • Zubkov I.N., Nepomnyshchiy A.P., Kondratyev V.D., Sorokoumov P.N., Sivak K.V., Ramsay E.S., Shishlyannikov S.M. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation. J. Microbiol., 2021, vol. 59, no 11.
  • Jovcic B., Begovic J., Lozo J., Topisirovic L., Kojic M. Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch. Biol. Sci., 2009, vol. 61, no. 2, pp. 159–164.
  • Boltes I., Czapinska H., Kahnert A., von Bulow R., Dierks T., Schmidt B., von Figura K., Kertesz M.A., Uson I. 1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. Structure, 2001, vol. 9, no. 6, pp. 483–491.
  • Kahnert A., Kertesz M.A. Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. Int. J. Biol. Chem., 2000, vol. 275, no. 41, pp. 31661–31667.
  • Hagelueken G., Adams T.M., Wiehlmann L., Widow U., Kolmar H., Tummler B., Heinz D.W., Schubert W.-D. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aerugi-nosa, defines a third class of sulfatases. PNAS, 2006, vol. 103, no. 20, pp. 7631–7636.
  • Chaturvedi V., Kumar A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int. Biodeterior. Biodegradation, 2011, vol. 65, no. 7, pp. 961–971.
  • Kharadi R.R., Sundin G.W. Cyclic-di-GMP regulates autoaggregation through the putative peptidoglycan hydrolase, EagA, and regulates transcription of the znuABC zinc uptake gene cluster in Erwinia amylovora. Front. Microbiol., 2011, vol. 11, 605265.
  • Klebensberger J., Rui O., Fritz E., Schink B., Philipp B. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch. Microbiol., 2006, vol. 185, no. 6, pp. 417–427.
  • Ciofu O., Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents – How P. Aeruginosa can escape antibiotics. Front. Microbiol., 2019, vol. 10, р. 913.
  • Haagensen J.A.J., Klausen M., Ernst R.K., Miller S.I., Folkesson A., Tolker-Nielsen T., Molin S. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol., 2007, vol. 189, no. 1, pp. 28–37.
  • Jennings L.K., Storeka K.M., Ledvina H.E., Coulon C., Marmont L.S., Sadovskaya I., Secor P.R., Tseng B.S., Scian M., Filloux A., Wozniak D.J., Howell P.L., Parsek M.R. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Microbiology, 2015, vol. 112, no. 36, pp. 11353–11358.
  • Byrd M.S., Sadovskaya I., Vinogradov E., Lu H., Sprinkle A. B., Richardson S.H., Ma L., Ralston B., Parsek M.R., Anderson E.M., Lam J.S., Wozniak D.J. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol., 2009, vol. 73, no. 4, pp. 622–638.
  • Klebensberger J., Birkenmaier A., Geffers R., Kjelleberg S., Philipp B. SiaA and SiaD are es-sential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aerugi-nosa. Environ. Microbiol., 2009, vol. 11, no. 12, pp. 3073–3086.
  • Giraud C., de Bentzmann S. Inside the complex regulation of Pseudomonas aeruginosa chap-erone usher systems. Environ. Microbiol., 2011, vol. 14, no. 18, pp. 1805–1816.
  • Colley, B. Regulatory mechanisms involved in the aggregation of Pseudomonas aeruginosa cells: PhD thesis – Sydney, Australia, 2014. 240 p.
  • Rybtke M., Berthelsen J., Yang L., Hoiby N., Givskov M., Tolker-Nielsen T. The LapG pro-tein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. MicrobiologyOpen, 2015, vol. 4, no. 6, pp. 917–930.
  • Chen G., Gan J., Yang C., Zuo Y., Peng J., Li M., Huo W., Xie Y., Zhang Y., Wang T., Deng X., Liang H. The SiaA/B/C/D signaling network regulates biofilm formation in Pseudomonas aerugi-nosa. EMBO J., 2020, vol. 39, no. 6. e103412.
  • Irie Y., Borlee B.R., O’Connor J.R., Hill P.J., Harwood C.S., Wozniak D.J., Parsek M.R. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aerugi-nosa. PNAS, 2012, vol. 109, no. 50, pp. 20632–20636.
  • Colley B., Dederer V., Carnell M., Kjelleberg S., Rice S.A., Klebensberger J. SiaA/D inter-connects c-di-GMP and RsmA signaling to coordinate cellular aggregation of Pseudomonas aerugi-nosa in response to environmental conditions. Front. Microbiol., 2016, vol. 7, р. 179.
  • Rajagopal S., Eis N., Nickerson K.W. Eight Gram-negative bacteria are 10,000 times more sensitive to cationic detergents than to anionic detergents. Can. J. Microbiol., 2003, vol. 49, no. 12, pp. 775–779.
  • Sousa-Silva M., Simoes M., Melo L., Machado I. Pseudomonas fluorescens tolerance to ben-zyldimethyldodecyl ammonium chloride: Altered phenotype and cross-resistance. J. Glob. Antim-icrob. Resist., 2018, vol. 15, pp. 188–195.
  • Langsrud S., Sundheim G., Borgmann-Strahsen R. Intrinsic and acquired resistance to quater-nary ammonium compounds in food-related Pseudomonas sp. J. Appl. Microbiol., 2003, vol. 95, no. 4, pp. 874–882.
  • Simoes M., Simoes L.C., Pereira M.O., Vieira M.J. Sodium dodecyl sulfate allows the persis-tence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions. Biofouling, 2008, vol. 24, no. 1, pp. 35–44.
  • Henriksen J.R., Andresen T.L., Feldborg L.N., Duelund L., Ipsen J.H. Understanding deter-gent effects on lipid membranes: A model study of lysolipids. Biophys. J., 2010, vol. 98, no. 10, pp. 2199–2205.
  • Heerklotz H., Blume A. Detergent interactions with lipid bilayers and membrane proteins. Comprehensive Biophysics, 2012, vol. 5, pp. 63–91.
  • Janse J.D., Derks J.H.J., Spit B.E., Van Der Tuin W.R. Classification of fluorescent soft rot Pseudomonas bacteria, Including PP. marginalis strains, using whole cell fatty acid analysis. System. Appl. Microbiol., 1992, vol. 15, no. 4, pp. 538–553.
  • Heipieper H.J., Meinhardt F., Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett., 2003, vol. 229, no. 1, pp. 1–7.
  • Shanklin J., Whittle E. Evidence linking the Pseudomonas oleovorans alkane ω-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett., 2003, vol. 545, no. 2-3, pp. 188–192.
  • Tattawasart U., Maillard J.-Y., Furr J.R., Russell A.D. Outer membrane changes in Pseudo-monas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int. J. Antimicrob. Agents., 2000, vol. 16, no. 3, pp. 233–238.
  • Guerin-Mechin L., Dubois-Brissonnet F., Heyd B., Leveau J.Y. Quaternary ammonium com-pound stresses induce specific variations in fatty acid composition of Pseudomonas aeruginosa. Int. J. Food Microbiol., 2000, vol. 55, no. 1-3, pp. 157–159
  • Nyberg H. The influence of ionic detergents on the phospholipid fatty acid compositions of Porphyridium purpureum. Phytochemistry, 1985, vol.24, no. 3, pp. 435–440.
  • Carmona-Salazar L., El Hafidi M., Gutierrez-Najera N., Noyola-Martinez L., Gonzalez-Solis A., Gavilanes-Ruiz M. Fatty acid profiles from the plasma membrane and detergent resistant mem-branes of two plant species. Phytochemistry, 2015, vol. 109, pp. 25–35.
  • Nixdorff K., Gmeiner J., Martin H.H. Interaction of lipopolysaccharide with detergents and its possible role in the detergent resistance of the outer membrane of gram-negative bacteria. Biochim. Biophys. Acta., 1978, vol. 510, no. 1, pp. 87–98.
  • White G.F., Russell N.J., Day M.J. A Survey of sodium dodecyl sulphate (SDS) resistance and alkylsulphatase production in bacteria from clean and polluted river sites. Environ. Pollut., 1985, vol. 37, no. 1, pp. 1–11.
  • Muller I., Kahnert A., Pape T., Sheldrick G.M., Meyer-Klaucke W., Dierks T., Kertesz M., Uson I. Crystal structure of the alkylsulfatase AtsK: Insights into the catalytic mechanism of the Fe(II) α-ketoglutarate-dependent dioxygenase superfamily. Biochemistry, 2004, vol. 43, no. 11, pp. 3075–3088.
  • Knaus T., Schober M., Kepplinger B., Faccinelli M., Pitzer J., Faber K., Macheroux PP., Wagner U. Structure and mechanism of an inverting alkylsulfatase from Pseudomonas spp. DSM6611 specific for secondary alkyl sulfates. FEBS. J., 2012, vol. 279, no. 23, pp. 4374–4384.
  • Panasia G., Oetermann S., Steinbuchel A., Philipp B. Sulfate ester detergent degradation in Pseudomonas aeruginosa is subject to both positive and negative regulation. Appl. Environo. Micro-biol., 2019, vol. 85, no. 23.
  • Ellis A.J., Hales S.G., Ur-Rehman N.G.A., White G.F. Novel alkylsulfatases required for bio-degradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate. Appl. Environ. Mi-crobiol., 2002, vol. 68, no. 1, pp. 31–36.
  • Gadler P., Faber K. Highly enantioselective biohydrolysis of sec-alkyl sulfate esters with in-version of configuration catalysed by Pseudomonas sp. Eur. J. Org. Chem., 2007, vol. 2007, no. 33, pp. 5527–5530.
  • Li S., Su Y., Liu Y., Sun L., Yu M., Wu Y. Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of recombinant thermostable alkylsulfatase (SdsAP) from Pseudomonas spp. S9. Process Biochem., 2016, vol. 51, no. 12, pp. 2084–2089.
  • Sun L., Chen P., Su Y., Cai Z., Ruan L., Xu X., Wu Y. Crystal structure of thermostable alkyl-sulfatase SdsAP from Pseudomonas spp. S9. Biosci. Rep., 2017, vol. 37, no. 3, BSR20170001.
  • Furmanczyk E.M., Lipinski L., Dziembowski A., Sobczak A. Genomic and functional charac-terization of environmental strains of SDS-degrading Pseudomonas sp., providing a source of new sul-fatases. Front. Microbiol., 2018, vol. 9, 1795.
  • Chaturvedi V., Kumar A. Presence of SDS-degrading enzyme, alkyl sulfatase (SdsA1) is spe-cific to different strains of Pseudomonas aeruginosa. Process Biochem., 2013, vol. 48, no. 4, pp. 688–693.
  • Davison J., Brunel F., Phanopoulos A., Prozzia D., Terpstra P. Cloning and sequencing of Pseudomonas genes determining sodium dodecyl sulfate biodegradation. Gene, 1992, vol. 114, no. 1, pp. 19–24.
  • Jovcic B., Venturi V., Davison J., Topisirovic L., Kojic M. Regulation of the sdsA alkyl sulfa-tase of Pseudomonas spp. ATCC19151 and its involvement in degradation of anionic surfactants. J. Appl. Microbiol., 2010, vol. 109, no. 3, pp. 1076–1083.
  • Kostal J., Suchanek M., Klierova H., Demnerova K., Kralova B., McBeth D.L. Pseudomonas C01B, an SDS degrading strain, harbours a plasmid coding for degradation of medium chain length n-alkanes. Int. Biodeterior. Biodegradation, 1998, vol. 42, pp. 211–228.
  • Shin, S. Ahmed I., Hwang J., Seo Y., Lee E., Choi J., Moon S., Hong J.W. A microfluidic ap-proach to investigating a synergistic effect of tobramycin and sodium dodecyl sulfate on Pseudomonas aeruginosa biofilm. Anal. Sci., 2016, vol. 32, no. 1, pp. 67–73.
  • Fitzgerald J.W., Kight-Olliff L.C., Stewart G.J., Beauchamp N.F. Reversal of succinate-mediated catabolite repression of alkylsulfatase in Pseudomonas aeruginosa by 2,4-dinitrophenol and by sodium malonate. Can. J. Microbiol., 1978, vol. 24, no. 12. pp. 1567–1573.
  • Kight-Olliff L.C., Fitzgerald J.W. Inhibition of enzyme induction in Pseudomonas aeruginosa by exogenous nucleotides. Can. J. Microbiol., 1978, vol. 24, no. 7, pp. 811–817.
  • Fitzgerald J.W., Kellogg R.B., Stewart G.J. Stimulation of arylsulphatase synthesis in Pseu-domonas aeruginosa by exogenous nucleotides. FEMS Microbiol. Lett., 1981, vol. 11, pp. 93–96.
  • Fitzgerald J.W., Kight L.C. Physiological control of alkylsulfatase synthesis in Pseudomonas aeruginosa: effects of glucose, glucose analogs, and sulfur. Can. J. Microbiol., 1977, vol. 23. – pp. 1456–1464.
  • Collier D.N., Hager P.W., Phibbs Jr. P.V. Catabolite repression control in the Pseudomonads. Res. Microbiol., 1996, vol. 147, no. 6-7, pp. 551–561.
Еще
Статья научная