The use of sericin obtained on the basis of local raw materials to treat skin burns and its scars

Автор: Shakirov S.A.

Журнал: Экономика и социум @ekonomika-socium

Рубрика: Основной раздел

Статья в выпуске: 10 (89), 2021 года.

Бесплатный доступ

A burn is a type of injury to the skin, or other tissues, caused by heat, cold, electricity, chemicals, friction, or radiation. Most burns are due to heat from hot liquids (called scalding), solids, or fire. Compared to first- and second-degree burns, third-degree burns pose a greater risk for complications. However, all burns increase the risk of infection. So the difficulties of burns are hazardous and can lead to disability and death, along with several pathologies (tetanus, sepsis, hypothermia, hypovolemia, etc.). Sericin, a substance derived from silk, may have advantages in the treatment of burns. We will discuss this in this article.

Еще

Burns, electricity, chemical, friction, radiation, pathology, tetanus, sepsis, hypothermia, hypovolemia, sericin.

Короткий адрес: https://sciup.org/140260772

IDR: 140260772

Список литературы The use of sericin obtained on the basis of local raw materials to treat skin burns and its scars

  • World Health Organization. September 2016. Archived from the original on 21 July 2017. Retrieved 1 August 2017.
  • Tintinalli, Judith E. (2010). Emergency Medicine: A Comprehensive Study Guide (Emergency Medicine (Tintinalli)). New York: McGraw-Hill Companies. pp. 1374–1386. ISBN 978-0-07-148480-0.
  • Granger J (January 2009). "An Evidence-Based Approach to Pediatric Burns". Pediatric Emergency Medicine Practice. 6 (1). Archived from the original on 17 October 2013.
  • Herndon D, ed. (2012). "Chapter 3: Epidemiological, Demographic, and Outcome Characteristics of Burn Injury". Total burn care (4th ed.). Edinburgh: Saunders. p. 23. ISBN 978-1-4377-2786-9.
  • King C, Henretig FM, King BR, Loiselle J, Ruddy RM, Wiley II JF, eds. (2008). Textbook of pediatric emergency procedures (2nd ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 1077. ISBN 978-0-7817-5386-9. Archived from the original on 22 May 2016.
  • Granger J (January 2009). "An Evidence-Based Approach to Pediatric Burns". Pediatric Emergency Medicine Practice. 6 (1). Archived from the original on 17 October 2013.
  • Brunicardi C (2010). "Chapter 8: Burns". Schwartz's principles of surgery (9th ed.). New York: McGraw-Hill, Medical Pub. Division. ISBN 978-0-07-154769-7.
  • Rojas Y, Finnerty CC, Radhakrishnan RS, Herndon DN (December 2012). "Burns: an update on current pharmacotherapy". Expert Opinion on Pharmacotherapy. 13 (17): 2485–94. doi:10.1517/14656566.2012.738195. PMC 3576016. PMID 23121414.
  • Juckett G, Hartman-Adams H (August 2009). "Management of keloids and hypertrophic scars". American Family Physician. 80 (3): 253–60. PMID 19621835.
  • Medically reviewed by Modern Weng, do: Written by April Khan and Matthew Solan. https://www.healthline.com/health/burns#outlook. Updated on March 7, 2019.
  • Sapru, S., Das, S., Mandal, M., Ghosh, A. K., & Kundu, S. C. (2019). Nonmulberry silk protein sericin blend hydrogels for skin tissue regeneration - in vitro and in vivo. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2019.06.121.
  • Nielson CB, Duethman NC, Howard JM, Moncure M, Wood JG. Burns: pathophysiology of systemic complications and current management. J Burn Care Res 2017;38:e469–81, doi: http://dx.doi.org/10.1097/BCR.0000000000000355.
  • Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care 2015;19:243, doi:http://dx.doi. org/10.1186/s13054-015-0961-2.
  • Committee IPG. ISBI practice guidelines for burn care. Burns 2016;42:953–1021, doi:http://dx.doi.org/10.1016/j. burns.2016.05.013.
  • Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, ParungaoR, et al. Burninjury: challenges andadvances inburn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 2018;123:3–17, doi:http://dx.doi.org/10.1016/j.addr.2017.09.018.
  • Vigani A, Culler CA. Systemic and local management of burn wounds. Vet Clin North Am Small Anim Pract 2017;47:1149–63, doi:http://dx.doi.org/10.1016/j.cvsm.2017.06.003.
  • Orgill DP. Excision and skin grafting of thermal burns. N Engl J Med 2009;360:893–901, doi:http://dx.doi.org/10.1056/ NEJMct0804451.
  • Finnerty CC, Jeschke MG, Branski LK, Barret JP, Dziewulski P, Herndon DN. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet (London England) 2016;388:1427–36, doi:http://dx.doi.org/10.1016/S0140-6736 (16)31406-4.
  • Foubert, P., Liu, M., Anderson, S., Rajoria, R., Gutierrez, D., Zafra, D., … Fraser, J. K. (2018). Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model. Burns. doi:10.1016/j.burns.2018.05.006.
  • Siavashani, A. Z., Mohammadi, J., Rottmar, M., Senturk, B., Nourmohammadi, J., Sadeghi, B., … Maniura-Weber, K. (2020). Silk fibroin/sericin 3D sponges: The effect of sericin on structural and biological properties of fibroin. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2020.02.316.
  • S.C. Kundu, B.C. Dash, R. Dash, D.L. Kaplan, Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications, Prog. Polym. Sci. 33 (10) (2008) 998–1012.
  • R.I. Kunz, R.M. Brancalhao, L.F. Ribeiro, M.R. Natali, Silkworm sericin: properties and biomedical applications, Biomed. Res. Int. 2016 (2016) 8175701.
  • T.T. Cao, Y.Q. Zhang, Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines, Mat Sci Eng C-Mater 61 (2016) 940–952. Fig. 7. Histological (Masson's trichrome) and immunohistochemical analysis (CD 31) of in the skin tissue obtained four weeks post-implantation of the designed sericin based hydrogels showing the formation of blood vessels. Scale bar represents 1000 μm (CD31) and 500 μm (for the magnified images). Black arrows represent the blood vessels. 552 S. Sapru et al. / International Journal of Biological Macromolecules 137 (2019) 545–55.
  • L. Lamboni, M. Gauthier, G. Yang, Q. Wang, Silk sericin: a versatile material for tissue engineering and drug delivery, Biotechnol. Adv. 33 (8) (2015) 1855–1867.
  • S.C. Kundu, B. Kundu, S. Talukdar, S. Bano, S. Nayak, J. Kundu, B.B. Mandal, N. Bhardwaj, M. Botlagunta, B.C. Dash, C. Acharya, A.K. Ghosh, Invited review nonmulberry silk biopolymers, Biopolymers 97 (6) (2012) 455– 467.
  • J.P. Kumar, B.B. Mandal, Antioxidant potential of mulberry and nonmulberry silk sericin and its implications in biomedicine, Free Radical Bio Med 108 (2017) 803–818.
  • R. Dash, C. Acharya, P.C. Bindu, S.C. Kundu, Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts, BMB Rep. 41 (3) (2008) 236–241.
  • R. Dash, M. Mandal, S.K. Ghosh, S.C. Kundu, Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes, Mol. Cell. Biochem. 311 (1–2) (2008) 111–119.
  • Y.Q. Zhang, Applications of natural silk protein sericin in biomaterials, Biotechnol. Adv. 20 (2) (2002) 91–100.
  • P. Aramwit, S. Kanokpanont, T. Nakpheng, T. Srichana, The effect of sericin from various extraction methods on cell viability and collagen production, Int. J. Mol. Sci. 11 (5) (2010) 2200–2211.
  • P. Aramwit, S. Kanokpanont, W. De-Eknamkul, T. Srichana, Monitoring of inflammatory mediators induced by silk sericin, J. Biosci. Bioeng. 107 (5) (2009) 556–561.
  • Z. Jiao, Y. Song, Y. Jin, C. Zhang, D. Peng, Z. Chen, P. Chang, S.C. Kundu, G. Wang, Z. Wang, L. Wang, In vivo characterizations of the immune properties of sericin: an ancient material with emerging value in biomedical applications, Macromol. Biosci. 17 (12) (2017).
  • S. MacNeil, Biomaterials for tissue engineering of skin, Mater. Today 11 (5) (2008) 26–35.
  • C.A. Harrison, M.J. Heaton, C.M. Layton, S. Mac Neil, Use of an in vitro model of tissueengineered human skin to study keratinocyte attachment and migration in the process of reepithelialization, Wound Repair Regen. 14 (2) (2006) 203–209.
  • T. Siritientong, J. Ratanavaraporn, T. Srichana, P. Aramwit, Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as twodimensional wound dressings for the healing of superficial wounds, Biomed. Res. Int. 2013 (2013), 904314 13.
  • T. Siritientong, A. Angspatt, J. Ratanavaraporn, P. Aramwit, Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites, Pharm. Res. 31 (1) (2014) 104–116.
  • K. Mizuno, K. Yamamura, K. Yano, T. Osada, S. Saeki, N. Takimoto, T. Sakurai, Y. Nimura, Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice, J. Biomed. Mater. Res. A 64A (1) (2003) 177–181.
  • H. Liu, C.Y. Wang, C. Li, Y.G. Qin, Z.H. Wang, F. Yang, Z.H. Li, J.C. Wang, A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing, RSC Adv. 8 (14) (2018) 7533–7549.
  • S. Kim, Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, Int J Polym Sci (2018), 1708172 13.
  • Y. Usami, Y. Okamoto, S. Minami, A. Matsuhashi, N.H. Kumazawa, S. Tanioka, Y. Shigemasa, Chitin and chitosan induce migration of bovine polymorphonuclear cells, J. Vet. Med. Sci. 56 (4) (1994) 761–762.
Еще
Статья научная