Термоокислительная деструкция бутадиен-нитрильных каучуков и отходов производства

Автор: Шехавцова Т.Н., Шаталов Г.В., Папков В.Н., Карманова О.В.

Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet

Рубрика: Химическая технология

Статья в выпуске: 4 (90), 2021 года.

Бесплатный доступ

Исследован процесс термоокислительной деструкции промышленных бутадиен-нитрильных сополимеров марок СКН-18, СКН-26 и некондиционных продуктов. Процесс проведен в ароматических растворителях (толуол или ксилол) под воздействием кислорода воздуха в присутствии аддукта радикального инициатора азодиизобутиронитрила с N-метилпирролидоном. Методом гель-проникающей хроматографии определены среднемассовые молекулярные массы получаемых продуктов и выполнены расчеты молекулярно-массового распределения. Рассмотрено влияние температуры и содержания инициатора на изменение характеристической вязкости растворов образующихся продуктов деструкции в зависимости от времени проведения процесса. На основе сопоставительного анализа параметров деструкции с использованием толуола и ксилола при 80оС и концентрации инициатора 0,8% масс. установлено, что на процесс термоокислительной деструкции с получением низкомолекулярных полимеров молекулярной массой 40·103 тип растворителя и время деструкции практически не влияют. Показано, что в ходе деструкции промышленных каучуков, различающихся содержанием акрилонитрила, процесс протекает с образованием более высокомолекулярных соединений у каучуков с более высоким содержанием звеньев акрилонитрила. При проведении деструкции некондиционного каучука СКН-26СНТ с высокой жёсткостью по Дефо необходимо увеличение концентрации инициатора до 1,1% масс. и температуры. Рассмотрен механизм термоокислительной деструкции исследуемых полимеров. По данным ИК-спектроскопии и химического анализа установлено, что продукты термоокислительной деструкции бутадиен-нитрильных каучуков содержат кислородсодержащие функциональные группы. Таким образом, разработан простой промышленно-доступный способ получения низкомолекулярных бутадиен-нитрильных полимеров на основе каучуков специального назначения и некондиционных продуктов с функциональными гидроксильными, карбоксильными и эпоксидным группами.

Еще

Термоокислительная деструкция, бутадиен-нитрильные каучуки, n-метилпирролидоном, отходы производства, каучук

Короткий адрес: https://readera.org/140290666

IDR: 140290666   |   DOI: 10.20914/2310-1202-2021-4-308-314

Список литературы Термоокислительная деструкция бутадиен-нитрильных каучуков и отходов производства

  • Черная А.Н., Никулин С.С. Модификация нефтеполимерной смолы из фракции С9 малеиновой кислотой и ее применение для защитной обработки древесины. // Химическая промышленность сегодня. 2009. № 4. С. 28-33.
  • Папков В.Н., Гусев Ю.К., Ривин Э.М., Блинов Е.В. Бутадиен-нитрильные каучуки. Воронеж: ФГБОУ ВПО "Воронежский государственный университет инженерных технологий", 2014. 218 с.
  • Лоншакова Т.И., Черных К.А., Утилин И.В. Термоокислительная деструкция диеновых каучуков молекулярным кислородом в растворе, инициированная оксидатами полимеров // Химия и компьютерное моделирование. Бутлеровские сообщения. 2004. Т. 5. № 2. С. 63-67.
  • Тихомиров С.Г., Семенов М.Е., Хаустов И.А., Битюков В.К. и др. Контроль и прогнозирование параметров качества полимеров в процессе их деструкции в растворе // Теоретические основы химической технологии. 2018. Т. 52. № 4. С. 466-472.
  • Pat. № US 2009076227 Al, US, C08C19/02. Process for the metathetic degradation of mtnle rubber / Obrecht W., Muller Ju.M., Nuyken O. Publ. 19.03.2009.
  • Pat. № US 20120329941 Al, US, C08C19/08. Metathesis of mtnle rubbers in the presence of transition metal catalysts / Ong C., Mueller Ju.M., Soddemann M., Koenig T. Publ. 27.12.2012.
  • Pat. № US 8609782 B2, US, B01J31/22. Process for degrading nitrile rubbers in the presence of catalysts having an increased activity / Obrecht W., Ong C., Miller J.M., Nuyken O. Publ. 17.12.2013.
  • Шехавцова Т.Н., Г.В. Шаталов, А.С. Шестаков, В.Н. Папков Термоокислительная деструкция как способ получения низкомолекулярных полидиеновых полимеров // Каучук и резина. 2018. Т.77. № 6.
  • Шехавцова Т.Н., Шаталов Г.В., Шестаков А.С., Папков В.Н. и др. Получение низкомолекулярных функционализированных полимеров термоокислительной деструкцией стереорегулярного полибутадиена // Конденсированные среды и межфазные границы. 2016. Т.18. № 3. С. 414-421.
  • Карасева С.Я., Жабина А.А. Химия и технология высокомолекулярных соединений. 2015.
  • Sokolova M.D., Fedorova A.F., Davydova M.L. Influence of 6PPD Stabilizer on Climatic Stability of Rubbers Based on Butadiene-Nitrile and Epichlorohydrin Rubbers // Materials Science Forum. Trans Tech Publications Ltd, 2019. V. 945. P. 433-437. dot: 10.4028/www.scientific.net/MSF.945.433
  • Davydova M.L., Fedorova A.F. Research changes in the properties of butadiene-nitrile rubber under various aging conditions// Journal of Elastomers & Plastics. 2021. P. 00952443211029036. doi: 10.1177/00952443211029036
  • Wang X., Chen D., Zhong W., Zhang L. et al. Experimental and theoretical evaluations of the interfacial interaction between carbon nanotubes and carboxylated butadiene nitrile rubber: Mechanical and damping properties // Materials & Design. 2020. V. 186. P. 108318. doi: 10.1016/j.matdes.2019.108318
  • Shadrinov N.V., Borisova A.A. Thermophysical and Dynamic Properties of Nitrile Butadiene Rubber Filled with Ultra-High Molecular Weight Polyethylene // Inorganic Materials: Applied Research. 2021. V. 12. №. 4. P. 1112-1119. doi: 10.1134/S2075113321040389
  • Bochkarev E.S., Vostrikov D.S., Tuzhikov O.O. Ozone Resistance of Vulcanizates Based on XNB Rubber // Defect and Diffusion Forum. Trans Tech Publications Ltd, 2021. V. 410. P. 686-691. doi: 10.4028/www.scientific.net/DDF.410.686
  • Fedorova A.F., Davydova M.L., Sokolova M.D., Pavlova V.V. The Effect of Phenolic Antioxidants on the Nominal Tensile Strength of Nitrile Butadiene Rubbers during Full-Scale Exposure // Polymer Science, Series D. 2021. V. 14. №. 2. P. 312-317. doi: 10.1134/S1995421221020064
  • Dubkov K.A., Panov G.I., Parmon V.N. Nitrous oxide as a selective oxidant for ketonization of C= C double bonds in organic compounds // Russian Chemical Reviews. 2017. V. 86. №. 6. P. 510.
  • Yan H., Li H., Li W., Fan X. et al. Probing the Damping Property of Three-Dimensional Graphene Aerogels in Carboxylated Nitrile Butadiene Rubber/Polyurethane Blend // Polymer Engineering & Science. 2020. V. 60. №. 1. P. 61-70. doi: 10.1002/pen.25259
  • Zuleta E.C., Baena L., Rios L.A., Calderón J.A. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: a review // Journal of the Brazilian Chemical Society. 2012. V. 23. №. 12. P. 2159-2175.
  • Wei X., Wu H.L., Zhang L.W., Zhang S.Y. et al. Failure Analysis of Nitrile Rubber O-Rings Static Sealing for Packaging Barrel // Journal of Failure Analysis and Prevention. 2018. V. 18. №. 3. P. 628-34. doi: 10.1007/s11668-018-0451-3
Еще
Статья научная