Strength and deformability of compressed-bent masonry structures during and after fire

Автор: Mohireva Arina Olegovna, Proskurovskis Arturs, Glebova Ekaterina Alekseevna, Nazinyan Levon Gaikovic, Belousov Nikita Dmitrievich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 7 (92), 2020 года.

Бесплатный доступ

Monitoring of structures in conditions of beyond design basis impacts, including fire and similar impacts associated with exposure to elevated temperatures, which is relevant for both civil and industrial buildings, is especially important. The least studied area is the behavior of compressed-bent masonry structures in such conditions. Based on experimental data, a numerical analysis of compressed-bent masonry structures was carried out. Elevated temperatures from 500 to 1200 degrees were taken. Moreover, we took into account the change in the deformation-strength properties of the masonry depending on temperature, as well as the uneven heating of the structures and the stage of their cooling. The analysis results showed that at the stage of heating and maintaining a high temperature, the behavior of structure changes slightly, with the exception of temperatures of 1000-1200 degrees, when the material becomes ultra-brittle. It was also revealed that the most dangerous stage of cooling at the initial temperature rise above 800 degrees. This circumstance can be taken into account when developing monitoring systems for industrial facilities.


Elevated temperature, masonry, compress-bent structures, fire resistance, numerical models

Короткий адрес:

IDR: 143172533   |   DOI: 10.18720/CUBS.92.3

Список литературы Strength and deformability of compressed-bent masonry structures during and after fire

  • Th.-D. Nguyen, F. Meftah. Behavior of clay hollow-brick masonry wall sduring fire. Part1: experimental analysis. FireSaf. 2012. 52 Pp. 55-64. DOI: 10.1016/j.firesaf.2012.06.001
  • T. Saknite, D. Serdjuks, V. Goremikins, L. Pakrastins, N.I. Vatin. Fire design of arch-type timber roof. Magazine of Civil Engineering. 2016. 64(4). Pp. 26-39. DOI: 10.5862/MCE.64.3
  • M.V. Gravit, O.V. Nedryshkin, O.T. Ogidan. Transformable fire barriers in buildings and structures. Magazine of Civil Engineering. 2018. 77(1). Pp. 38-46. DOI: 10.18720/MCE.77.410.18720/MCE.77.4
  • M. Gravit, I. Dmitriev, A. Ishkov. Quality control of fireproof coatings for rein-forced concrete structures. IOP Conference Series: Earth and Environmental Science. 2017. 90(1). DOI: 10.1088/1755-1315/90/1/012226
  • D. Nguyen, A. Mebarki. The behaviour of masonry walls subjected to fire: Modelling and parametrical studies in the case of hollow burnt-clay bricks. Fire Safety Journal. 2009. 44(4). Pp. 629-64. DOI: 10.1016/j.firesaf.2008.12.006
  • A. Krivtcov, M. Gravit, S. Zimin, O. Nedryshkin, V. Pershakov. Calculation of Limits of Fire Resistance for Structures with Fire Retardant Coating. MATEC Web of Conferences. 2016. 53.
  • DOI: 10.1051/matecconf/20165301032
  • Q. Qi, Fei Tao, T.Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, A.Y.C. Nee. Enabling technologies and tools for digital twin. Journal of Manufacturing Systems. 2019. 29.
  • DOI: 10.1016/j.jmsy.2019.10.001
  • M. Kornmann. Clay Bricks and Rooftiles. Manufacturing and Properties, Société de l'industrie Minérale. 2007.
  • O. Nedryshkin, M. Gravit, K. Grabovyy. Modeling fires in structures with an atrium in the FDS field model. MATEC Web of Conferences. 2018. 193.
  • DOI: 10.1051/matecconf/201819303023
  • K.R. Kodur, M. Garlock, N. Iwankiw, Structures in fire: state-of-the-art, research and training needs. Fire Technol. 2012. 48. Pp. 825-839.
  • DOI: 10.1007/S10694-011-0247-4
  • S. Russo, F. Sciarretta, Masonry exposed to high temperatures: mechanical behavior and properties- an overview. Fire Safety Journal. 2013. 55. Pp. 69-86.
  • DOI: 10.4028/
  • M. Gravit, V. Lyulikov, A. Fatkullina. Possibilities of modern software complexes in simulation fire protection of constructions structures with Sofistik. MATEC Web of Conferences. 2018.
  • DOI: 10.1051/matecconf/201819303026
  • A. Nadjai, M. O'Garra, F. Ali. Finite element modelling of compartment masonry walls in fire. School of the Built Environment, University of Ulster, Newtownabbey, UK Received. 2003.
  • DOI: 10.1016/S0045-7949(03)00212-8
  • M.V. Gravit, M.D. Terekh, V.A. Lyulikov, S.A. Svintsov. Software packages for calculation of fire resistance of building construction, including fire protection. IOP Conference Series: Materials Science and Engineering. 2018. 456(1).
  • DOI: 10.1088/1757-899X/456/1/012016
  • DJ. O'Connor, A. Nadjai, ME. O'Gara. A numerical model for the behaviour of masonry under elevated temperatures. In: Proc. Fourth Int. Conf. Comp. Struct, Edinburgh, Civil- Comp Press, Edinburgh. 2003.
  • DOI: 10.1002/FAM.824
  • D. Nguyen, Meftah F. Behavior of hollow clay brick masonry walls during fire. Part 2: 3D finite element modeling and spalling assessment. Fire Safety Journal. 2014. 66 Pp.35-45
  • DOI: 10.1016/J.FIRESAF.2013.08.017
  • M. Andreini, M. Sassu. Mechanical behaviour of full unit masonry panels under fire action. Department of Civil Engineering - Structural Division, University of Pi-sa Largo Lucio Lazzarino. 2011.
  • DOI: 10.1016/J.FIRESAF.2011.07.004
  • F. Sciarretta. Modeling of mechanical damage in traditional brickwork walls after fire exposure, Adv. Mater. Res. 2014. 919 Pp. 495-499.
  • DOI: 10.4028/
  • E. Nedviga, N. Beresneva, M. Gravit, A. Blagodatskaya. Fire Resistance of Pre-fabricated Monolithic Reinforced Concrete Slabs of "Marko" Technology. Advances in Intelligent Systems and Computing. 2018. 692. Pp. 739-749.
  • DOI: 10.1007/978-3-319-70987-1_78
  • V.A. Rybakov, I.A. Ananeva, A.O. Rodicheva, O.T Ogidan. Stress-strain state of composite reinforced concrete slab elements under fire activity. Magazine of Civ-il Engineering. 2017. 74(6). Pp. 161-174.
  • DOI: 10.18720/MCE.74.13
  • V. Pershakov, A. Bieliatynskyi, I. Popovych, K. Lysnytska, V. Krasheninnikov. Progressive Collapse of High-Rise Buildings from Fire. MATEC Web of Conferences. 2016.
  • DOI: 10.18720/MCE.74.13
  • M. Andreini, A. Falco, M. Sassu. Stress-strain curves for masonry materials ex-posed to fire action, Fire Safety Journal. 2014. 69. Pp. 43-56.
  • DOI: 10.1016/J.FIRESAF.2011.07.004
  • J. Bošnjak, S. Gambarelli, A. Sharma, A. Meškovic. Experimental and numerical studies on masonry after exposure to elevated temperatures. Construction and Building Materials. 2020. 230.
  • DOI: 10.1016/j.conbuildmat.2019.116926
Статья научная