Современные вызовы и пути совершенствования оценки и управления рисками здоровью населения

Автор: Ракитский В.Н., Кузьмин С.В., Авалиани С.Л., Шашина Т.А., Додина Н.С., Кислицин В.А.

Журнал: Анализ риска здоровью @journal-fcrisk

Рубрика: Профилактическая медицина: актуальные аспекты анализа риска здоровью

Статья в выпуске: 3 (31), 2020 года.

Бесплатный доступ

С учетом международного опыта проанализированы основные направления совершенствования оценки и управления рисками в России, вытекающие из потребностей современного развития гигиенической науки и необходимости усиления противодействия новым угрозам здоровью населения. Обоснованы конкретные задачи развития методологии анализа риска здоровью, исходя из предпосылок для их решения в России, и определен круг практических проблем ее применения, которые особенно важно решить в ближайшей перспективе для устранения вредного влияния на среду обитания и здоровье населения. Основные результаты заключаются в формировании долгосрочной стратегии развития принципов анализа риска здоровью, учитывающей последние научные данные для решения следующих методических и практических задач: внедрение системного подхода при оценке канцерогенного / неканцерогенного риска; развитие единого подхода к проведению и интерпретации результатов токсикологических исследований «доза - ответ», который будет учитывать уровни фоновой заболеваемости и фоновые дозовые нагрузки, устанавливать восприимчивые группы населения и модели поведения; пороговые уровни, полученные путем определения реперных (benchmark) концентраций с учетом спонтанного фона, для установления новых и пересмотра уже имеющихся RfD и RfC; использование микросредового подхода при оценке экспозиции; применение методологии оценки риска при внедрении показателей наилучших доступных технологий для контролирования безопасности здоровью населения после внедрения новых природоохранных подходов, направленных на снижение выбросов. Необходимость совершенствования подходов к оценке и управлению рисками здоровью и решаемые при этом задачи учтены при разработке «Отраслевой научно-исследовательской программы Роспотребнадзора на 2021-2025 гг.».

Еще

Оценка риска, управление риском, здоровье населения, окружающая среда, канцерогенные и неканцерогенные эффекты, доза - ответ, микросредовое воздействие, наилучшие доступные технологии

Короткий адрес: https://sciup.org/142226415

IDR: 142226415   |   DOI: 10.21668/health.risk/2020.3.03

Список литературы Современные вызовы и пути совершенствования оценки и управления рисками здоровью населения

  • Onishchenko G.G., Novikov S.M., RakhmaninYu.A., Avaliani S.L., Bushtueva K.A. Osnovy otsenki riska dlya zdorov'ya naseleniya pri vozdeistvii khimicheskikh veshchestv, zagryaznyayushchikh okruzhayushchuyu sredu [Basics of health risk assessment under exposure to chemicals that pollute the environment]. In: Yu.A. Rakhmanin, G.G. Onishchenko eds. Moscow, Nauchno-issledovatel'skii institute ekologii cheloveka i gigieny okruzhayushchei sredy imeni A.N. Sysina Publ., 2002, 408 p. (in Russian).
  • Novikov S.M., Shashina T.A., Dodina N.S., Kislitsin V.A., Skovronskaya S.A., Matsyuk A.V., Panchenko S.V., Arakelyan A.A. The experience of empirical research on comparative assessment of radiation and chemical health risks due to exposure to environmental factors. Gigiena i sanitariya, 2019, vol. 98, no. 12, pp. 1425-1431 (in Russian).
  • Revich B.A., Shaposhnikov D.A., Pershagen G. New epidemiological model for assessment of the impact of extremely hot weather and air pollution on mortality (in case of the Moscow heat wave of 2010). Profilakticheskaya meditsina, 2015, vol. 18, no. 5, pp. 29-33 (in Russian).
  • IPCS (International Program on Chemical Safety), 2014. Guidance Document on Evaluating and Expressing Uncertainty in Hazard Characterization. World Health Organization. Available at: http://www.who.int/ipcs/methods/harmonization/areas/hazard_assessment/en/ (01.04.2020).
  • National Research Council. Science and Decisions: Advancing Risk Assessment. Washington, DC, The National Academies Press Publ., 2009, 423 p.
  • Rodricks J.V., Levy J.I. Science and Decisions: Advancing Toxicology to Advance Risk Assessment. Toxicological Sciences, 2013, vol. 131, no. 1, pp. 1-8.
  • DOI: 10.1093/toxsci/kfs246
  • Rekomendatsii po ispol'zovaniyu funktsii "kontsentratsiya - effekt" v otnoshenii tverdykh chastits, ozona i dioksida azota dlya analiza zatrat i vygod [Recommendations on use of "concentration - effect" function regarding particulate matter, ozone and nitrogen dioxide in analyzing costs and benefits]. Copenhagen, World Health Organization, 2015, 66 p. (in Russian).
  • Chiu W.A., Slob W.A. Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects. Environ Health Perspect, 2015, vol. 123, no. 12, pp. 1241-1254.
  • DOI: 10.1289/ehp.1409385
  • Gehlhaus M.W., Gift J.S., Hogan K.A., Kopylev L., Schlosser P.M., A.-Kadry R. Approaches to cancer assessment in EPA's Integrated Risk Information System. Toxicol. Appl. Pharmacol., 2011, vol. 254, no. 2, pp. 170-180.
  • DOI: 10.1016/j.taap.2010.10.019
  • Slob W., Bakker M.I., Biesebeek J.D.T., Bokkers B.G.H. Exploring the Uncertainties in Cancer Risk Assessment Using the Integrated Probabilistic Risk Assessment (IPRA) Approach. Risk Analysis, 2014, no. 34, pp. 1401-1422.
  • DOI: 10.1111/risa.12194
  • Slob W., Setzer R.W. Shape and steepness of toxicological dose-response relationships of continuous endpoints. Critical Reviews in Toxicology, 2014, vol. 44, no. 3, pp. 270-297.
  • DOI: 10.1111/risa.12194
  • Hardy A., Benford D., Halldorsson T., Jeger M.J., Knutsen K.H., More S., Mortensen A. [et al.]. U.S. EPA. Benchmark Dose Technical Guidance. EFSA Journal, 2017, vol. 15, no. 1 (4658), pp. 41.
  • DOI: 10.2903/j.efsa.2017.4658
  • Air: Fate, Exposure, and Risk Analysis (FERA). EPA. Available at: https://www.epa.gov/fera/ (10.08.2020).
  • Gubernskii Yu.D., Novikov S.M., Kalinina N.V., Matsyuk A.V. Otsenka riska vozdeistviya na zdorov'e naseleniya khimicheskikh veshchestv, zagryaznyayushchikh vozdukh zhiloi sredy [Assessing risks of effects produced on population health by chemicals that pollute air in residential areas]. Gigiena i sanitariya, 2002, no. 6, pp. 27-30 (in Russian).
  • Further Technical Details about HAPEM4. EPA. Available at: https://archive.epa.gov/airtoxics/nata/web/html/hapem4followup2.html (10.08.2020).
  • EPA's Consolidated Human Activity Database. EPA. Available at: https://www.epa.gov/healthresearch/epas-consolidated-human-activity-databasehttps://www.epa.gov/fera/ (10.08.2020).
  • Sorokin N.D. Tekhnologicheskie normativy, tekhnologicheskie pokazateli i markernye veshchestva [Technological standards, technological parameters, and marker substances]. Ekologiya proizvodstva, 2019, no. 9, pp. 32-41 (in Russian).
  • Shchelchkov K.A., Volosatova M.A., Grevtsov O.V. Osnovnye aspekty primeneniya informatsionno-tekhnicheskikh spravochnikov po NDT [Basic aspects related to applying reference and technical guides on BAT]. Ekologiya proizvodstva, 2019, no. 5, pp. 20-26 (in Russian).
  • Clean. Air. Act., 1990. EPA. Available at: http://www.epa.gov/air/caa/ (10.04.2020).
  • Avaliani S.L., Mishina A.L. Harmonization of approaches to management of air quality. Zdorov'e naseleniya i sreda obitaniya, 2011, vol. 216, no. 3, pp. 44-48 (in Russian).
  • Onishchenko G.G., Novikov S.M., RakhmaninYu.A., Avaliani S.L., Bushtueva K.A. Osnovy otsenki riska dlya zdorov'ya naseleniya pri vozdeistvii khimicheskikh veshchestv, zagryaznyayushchikh okruzhayushchuyu sredu [Basics of health risk assessment under exposure to chemicals that pollute the environment]. In: Yu.A. Rakhmanin, G.G. Onishchenko eds. Moscow, Nauchno-issledovatel'skii institute ekologii cheloveka i gigieny okruzhayushchei sredy imeni A.N. Sysina Publ., 2002, 408 p. (in Russian).
  • Novikov S.M., Shashina T.A., Dodina N.S., Kislitsin V.A., Skovronskaya S.A., Matsyuk A.V., Panchenko S.V., Arakelyan A.A. The experience of empirical research on comparative assessment of radiation and chemical health risks due to exposure to environmental factors. Gigiena i sanitariya, 2019, vol. 98, no. 12, pp. 1425-1431 (in Russian).
  • Revich B.A., Shaposhnikov D.A., Pershagen G. New epidemiological model for assessment of the impact of extremely hot weather and air pollution on mortality (in case of the Moscow heat wave of 2010). Profilakticheskaya meditsina, 2015, vol. 18, no. 5, pp. 29-33 (in Russian).
  • IPCS (International Program on Chemical Safety), 2014. Guidance Document on Evaluating and Expressing Uncertainty in Hazard Characterization. World Health Organization. Available at: http://www.who.int/ipcs/methods/harmonization/areas/hazard_assessment/en/ (01.04.2020).
  • National Research Council. Science and Decisions: Advancing Risk Assessment. Washington, DC, The National Academies Press Publ., 2009, 423 p.
  • Rodricks J.V., Levy J.I. Science and Decisions: Advancing Toxicology to Advance Risk Assessment. Toxicological Sciences, 2013, vol. 131, no. 1, pp. 1-8.
  • DOI: 10.1093/toxsci/kfs246
  • Recommendations on use of "concentration - effect" function regarding particulate matter, ozone and nitrogen dioxide in analyzing costs and benefits. Copenhagen, World Health Organization, 2015, 66 p. (in Russian).
  • Chiu W.A., Slob W.A. Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects. Environ Health Perspect, 2015, vol. 123, no. 12, pp. 1241-1254.
  • DOI: 10.1289/ehp.1409385
  • Gehlhaus M.W., Gift J.S., Hogan K.A., Kopylev L., Schlosser P.M., A.-Kadry R. Approaches to cancer assessment in EPA's Integrated Risk Information System. Toxicol. Appl. Pharmacol., 2011, vol. 254, no. 2, pp. 170-180.
  • DOI: 10.1016/j.taap.2010.10.019
  • Slob W., Bakker M.I., Biesebeek J.D.T., Bokkers B.G.H. Exploring the Uncertainties in Cancer Risk Assessment Using the Integrated Probabilistic Risk Assessment (IPRA) Approach. Risk Analysis, 2014, no. 34, pp. 1401-1422.
  • DOI: 10.1111/risa.12194
  • Slob W., Setzer R.W. Shape and steepness of toxicological dose-response relationships of continuous endpoints. Critical Reviews in Toxicology, 2014, vol. 44, no. 3, pp. 270-297.
  • DOI: 10.1111/risa.12194
  • Hardy A., Benford D., Halldorsson T., Jeger M.J., Knutsen K.H., More S., Mortensen A. [et al.]. U.S. EPA. Benchmark Dose Technical Guidance. EFSA Journal, 2017, vol. 15, no. 1 (4658), pp. 41.
  • DOI: 10.2903/j.efsa.2017.4658
  • Air: Fate, Exposure, and Risk Analysis (FERA). EPA. Available at: https://www.epa.gov/fera/ (10.08.2020).
  • Gubernskii Yu.D., Novikov S.M., Kalinina N.V., Matsyuk A.V. Assessing risks of effects produced on population health by chemicals that pollute air in residential areas. Gigiena i sanitariya, 2002, no. 6, pp. 27-30 (in Russian).
  • Further Technical Details about HAPEM4. EPA. Available at: https://archive.epa.gov/airtoxics/nata/web/html/hapem4followup2.html (10.08.2020).
  • EPA's Consolidated Human Activity Database. EPA. Available at: https://www.epa.gov/healthresearch/epas-consolidated-human-activity-databasehttps://www.epa.gov/fera/ (10.08.2020).
  • Sorokin N.D. Technological standards, technological parameters, and marker substances. Ekologiya proizvodstva, 2019, no. 9, pp. 32-41 (in Russian).
  • Shchelchkov K.A., Volosatova M.A., Grevtsov O.V. Basic aspects related to applying reference and technical guides on BAT. Ekologiya proizvodstva, 2019, no. 5, pp. 20-26 (in Russian).
  • Clean. Air. Act., 1990. EPA. Available at: http://www.epa.gov/air/caa/ (10.04.2020).
  • Avaliani S.L., Mishina A.L. Harmonization of approaches to management of air quality. Zdorov'e naseleniya i sreda obitaniya, 2011, vol. 216, no. 3, pp. 44-48 (in Russian).
Еще
Статья научная