Promising quantum engineering of optical even/odd Schrodinger cat states

Бесплатный доступ

We propose an efficient way to implement new family of continuous variable (CV) states of definite parity. Measurement induced CV states of definite parity states are realized after subtraction of an arbitrary number of photons from the initial single-mode squeezed vacuum (SMSV) state using a photon number resolving (PNR) detector. Optical design requires irreducible number of optical elements for implementation of the CV states of definite parity. The potential of using the CV states in optical quantum information processing can be high. As an example, we show the possibility of using a family of the CV states of definite parity for quantum engineering of optical even/odd Schrödinger cat states (SCSs). In particular, we report the possibility of implementing the CV states of definite parity that approximate even/odd SCSs of amplitude slightly greater than 4 with fidelity prevailing 0,99 after subtraction of 50,51 photons from original SMSV. The success probability being the third key parameter of the optical design, decreases with an increase in the number of photons, but generally remains at an acceptable level for further use in quantum information processing in the case of a small number of subtracted photons.

Еще

Even/odd schrödinger cat states, single-mode squeezed vacuum state, measurement induced cv states of definite parity, beam splitter, photon number resolving detector

Короткий адрес: https://sciup.org/147236526

IDR: 147236526   |   DOI: 10.14529/mmph220108

Список литературы Promising quantum engineering of optical even/odd Schrodinger cat states

  • Kim M.S., Son W, Buzek V., Knight P.L. Entanglement by a Beam Splitter: Nonclassicality as a Prerequisite for Entanglement. Phys. Rev. A, 2002, Vol. 65, Iss. 3, p. 032323. DOI: 10.1103/PhysRevA.65.032323
  • Hong C.K., Ou Z.Y., Mandel L. Measurement of Subpicosecond Time Intervals between Two Photons by Interference. Phys. Rev. Lett., 1987, Vol. 59, Iss. 18, pp. 2044-2046. DOI: 10.1103/PhysRevLett.59.2044
  • Dakna M., Anhut T., Opatrny T., Knöll L., Welsch D.-G. Generating Schrödinger Cat-Like States by means of Conditional Measurement of a Beam Splitter. Phys. Rev. A, 1997, Vol. 55, Iss. 4, pp. 31843194. DOI: 10.1103/PhysRevA.55.3184
  • Podoshvedov S.A. Schemes for Performance od Displacing Hadamard Gate with Coherent States. Optics Communications, 2012, Vol. 285, Iss. 18, pp. 3896-3905. DOI: 10.1016/j.optcom.2012.04.029
  • Carranza R., Gerry C.C. Photon-Subtracted Two-Mode Squeezed Vacuum States and Applications to Quantum Optical Interferometry. Journal of the Optical Society of America B, 2012, Vol. 29, Iss. 9, pp. 2581-2587. DOI: 10.1364/JOSAB.29.002581
  • Podoshvedov S.A. Elementary Quantum Gates in Different Bases. Quantum Information Processing, 2016, Vol. 15, Iss. 10, pp. 3967-3993. DOI: 10.1007/s11128-016-1375-z
  • Dakna M., Knöll L., Welsch D.G. Photon-Added State Preparation via Conditional Measurement on a beam Splitter. Optics Communications, 1998, Vol. 145, Iss. 1-6, pp. 309-321. DOI: 10.1016/S0030-4018(97)00463-X
  • Lvovsky A.I., Mlynek J. Quantum-Optical Catalysis: Generating Nonclassical States of Light by means of Linear Optics. Phys. Rev. Lett., 2002, Vol. 88, Iss. 25, p. 250401. DOI: 10.1103/PhysRevLett.88.250401_
  • Bartley T.J., Donati G., Spring J.B., Min X.-J., Barbieri M., Datta A., Smith B.J., Walmsley I.A. Multiphoton State Engineering by Heralded Interference Between Single Photons and Coherent States. Phys. Rev. A, 2012, Vol. 86, Iss. 4, p. 043820. DOI: 10.1103/PhysRevA.86.043820
  • Wineland D.J. Nobel Lecture: Superposition, Entanglement, and Raising Schrödinger's Cat, Rev. Mod. Phys., 2013, Vol. 85, Iss. 3, pp. 1103-1114. DOI: 10.1103/RevModPhys.85.1103
  • Leggett A.J. Testing the Limits of Quantum Mechanics: Motivation, State of Play, Prospects, Journal of Physics: Condensed Matter, 2002, Vol. 14, no. 15, pp. R415-R451. DOI: 10.1088/09538984/14/15/201
  • van Enk S.J., Hirota O. Entangled Coherent States: Teleportation and Decoherence. Phys. Rev. A, 2001, Vol. 64, Iss. 2, p. 022313. DOI: 10.1103/PhysRevA.64.022313
  • Jeong H., Kim M.S. Efficient Quantum Computation Using Coherent States. Phys Rev. A, 2002, Vol. 65, Iss. 4, p. 042305. DOI: 10.1103/PhysRevA.65.042305
  • An N.B. Teleportation of Coherent-State Superpositions within a Network. Phys. Rev., 2003, Vol. 68, Iss. 2, p. 022321. DOI: 10.1103/PhysRevA.68.022321
  • Podoshvedov S.A. Efficient Quantum Teleportation of Unknown Qubit Based on DV-CV Interaction Mechanism, Entropy, 2019, Vol. 21, Iss. 2, Article no. 150. DOI: 10.3390/e21020150
  • Joo J., Munro W.J., Spiller T.P. Quantum Metrology with Entangled Coherent States. Phys. Rev. Lett., 2011, Vol. 107, Iss. 8, p. 083601. DOI: 10.1103/PhysRevLett.107.083601
  • Ralph T.C., Gilchrist A., Milburn G.J., Munro W.J., Glancy S. Quantum Computation with Optical Coherent States. Phys. Rev. A, 2003, Vol. 68, Iss. 4, p. 042319. DOI: 10.1103/PhysRevA.68.042319
  • Lund A.P., Ralph T.C., Haselgrove H.L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett, 2007, Vol. 100, Iss. 3, p. 030503. DOI: 10.1103/PhysRevLett.100.030503
  • Fukuda D., Fujii G., Numata T., Amemiya K., Yoshizawa A., Tsuchida H., Fujino H., Ishii H., Itatani T., Inoue S., Zama T. Titanium-Based Transition-Edge Photon Number Resolving Detector with 98% Detection Efficiency with Index-Matched Small-Gap Fiber Coupling. Optics Express, 2011, Vol. 19, Iss. 2, pp. 870-875. DOI: 10.1364/OE.19.000870
  • Bogdanov Yu.I., Katamadze K.G., Avosopiants G.V., Belinsky L.V., Bogdanova N.A., Kalinkin A.A., Kulik S.P. Multiphoton subtracted thermal states: Description, preparation, and reconstruction. Phys. Rev. A, 2017, Vol. 96, Iss. 6, p. 063803. DOI: 10.1103/PhysRevA.96.063803
  • Katamadze K.G., Avosopiants G.V., Bogdanova N.A., Bogdanov Yu.I., Kulik S.P. Multimode Thermal States with Multiphoton Subtraction: Study of the Photon-Number Distribution in the Selected Subsystem. Physical Review A, 2020, Vol. 101, Iss. 1, p. 013811. DOI: 10.1103/PhysRevA.101.013811
Еще
Статья научная