Проблемы измерений световых характеристик имитаторов солнечного излучения для наземной отработки космических аппаратов

Автор: А.А. Шевчук, О.В. Пастушенко, В.В. Двирный, Г.В. Двирный, А.А. Филатов

Журнал: Космические аппараты и технологии.

Рубрика: Ракетно-космическая техника

Статья в выпуске: 3, 2020 года.

Бесплатный доступ

Надежность как космических аппаратов в целом, так и отдельных их систем, подтверждается на этапе комплексной наземной экспериментальной отработки, включающей комплексные термовакуумные испытания. Тепловое состояние объекта испытаний в термовакуумных камерах получается, в частности, при помощи имитатора солнечного излучения. Для контроля энергетической освещенности имитатора солнечного излучения в условиях термовакуумных испытаний наиболее часто используют радиометры на основе кремниевых фотоэлектрических преобразователей. В то же время анализ особенностей кремниевых фотоэлектрических преобразователей показывает, что прямое измерение ими с требуемой для наземной отработки космических аппаратов точностью невозможно – их выходной сигнал нелинеен, зависит от принимаемого спектра, собственной температуры и обладает долговременной нестабильностью. Достигаемая точность измерений прямо зависит от числа и точности применяемых средств и методов необходимой коррекции, из которых коррекция несоответствия спектра имитатора солнечного излучения спектру Солнца является самой сложной и трудоемкой. В то же время спектрально неселективные тепловые радиометры свободны от перечисленных недостатков. В ходе проведенного авторами эксперимента подтверждена значительная зависимость точности измерения энергетической освещенности радиометрами на основе кремниевых фотоэлектрических преобразователей от принимаемого спектра. Сделан вывод о наибольшей оправданности прямого измерения энергетической освещенности имитатора солнечного излучения в условиях термовакуумных испытаний тепловыми радиометрами.

Еще

Термовакуумные испытания, имитатор солнечного излучения, энергетическая освещенность, спектральное несоответствие, фотоэлектрический преобразователь, тепловой радиометр

Короткий адрес: https://readera.org/14117445

IDR: 14117445   |   DOI: 10.26732/j.st.2020.3.01

Список литературы Проблемы измерений световых характеристик имитаторов солнечного излучения для наземной отработки космических аппаратов

  • ГОСТ Р 56469-2015. Аппараты космические автоматические. Термобалансные и термовакуумные испытания. M. : Стандартинформ, 2015. 11 с.
  • Кравченко С. В., Нестеров С. Б., Романько В. А., Тестоедов Н. А., Халиманович В. И., Христич В. В. Подходы к созданию комплексных систем для отработки и испытания космических аппаратов // Инженерный журнал: наука и инновации. 2013. № 1 (13). С. 149–175.
  • Асланян Р. О., Анисимов Д. И., Марченко И. А., Пантелеев В. И. Имитаторы солнечного излучения для термовакуумных испытаний космического аппарата // Сибирский журнал науки и технологий. 2017. № 2. С. 323–327.
  • ГОСТ Р МЭК 60904-1-2013. Приборы фотоэлектрические. Ч. 1. Измерения вольтамперных характеристик. M. : Стандартинформ, 2014. 12 с.
  • ГОСТ Р МЭК 60904-2-2013. Приборы фотоэлектрические. Ч. 2. Требования к эталонным солнечным приборам. M. : Стандартинформ, 2014. 10 с.
  • ГОСТ Р МЭК 60904-7-2013. Приборы фотоэлектрические. Ч. 7. Вычисление поправки на спектральное несоответствие при испытаниях фотоэлектрических приборов. M. : Стандартинформ, 2014. 8 с.
  • ГОСТ Р МЭК 60904-8-2013. Приборы фотоэлектрические. Ч. 8. Измерение спектральной чувствительности фотоэлектрических приборов. M. : Стандартинформ, 2014. 8 с.
  • ГОСТ Р МЭК 60904-9-2016. Приборы фотоэлектрические. Ч. 9. Требования к характеристикам имитаторов солнечного излучения. M. : Стандартинформ, 2017. 12 с.
  • ГОСТ Р МЭК 60904-10-2013. Приборы фотоэлектрические. Ч. 10. Методы определения линейности характеристик. M. : Стандартинформ, 2014. 13 с.
  • ГОСТ Р 55702-2013. Источники света электрические. Методы измерения электрических и световых параметров. M. : Стандартинформ, 2014. 44 с.
  • ГОСТ Р 8.587-2001. Средства измерений характеристик оптического излучения солнечных имитаторов. Методика поверки. M. : Госстандарт России, 2002. 16 с.
  • Крат С. А. Собственная температурная зависимость кремниевых фотопреобразователей лучистого потока при тепловакуумных испытаниях космических аппаратов // Решетневские чтения : материалы XVIII Междунар. науч.-практ. конф. Красноярск. 2015. Т. 1. С. 375–376.
  • Schubert F., Spinner D. Solar simulator spectrum and measurement uncertainties // Energy Procedia, 2016, no. 92, pp. 205–210.
  • Mullejans H., Salis E. Linearity of photovoltaic devices: quantitative assessment with N-lamp method // Measurement Science and Technology, 2019, no. 30, 065008 (9 pp). doi: 10.1088/1361-6501/ab1231
  • Metzdorf J., Winter S., Wittchen T. Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values // Metrologia, 2000, no. 37, pp. 573–578.
  • Фиданян Г. С., Морозова С. П., Парфентьев Н. А., Катышева А. А., Лисянский Б. Е., Саприцкий В. И. Установка для измерения абсолютной спектральной чувствительности солнечных элементов в стандартных условиях // Сборник «Труды XXIV Международной научно-технической конференции по фотоэлектронике и приборам ночного видения», 2016, С. 258–262.
  • Osterwald C. R., Campanelli M., Moriarty T., Emery K. A., Williams R. Temperature-dependent spectral mismatch corrections // IEEE Journal of Photovoltaics, 2015, vol. 5, no. 6, pp. 1692–1697.
  • Стребков Д. С., Никитин Б. А., Харченко В. В., Гусаров В. А., Тихонов П. В. Влияние температуры в широком интервале значений на параметры солнечных элементов // ЭЛЕКТРО. Электротехника, электроэнергетика, электротехническая промышленность. 2013. № 4. С. 46–48.
  • Крат С. А., Крат Н. М., Шаров А. К. Способ коррекции собственной температурной зависимости кремниевых фотоэлектрических преобразователей. Пат. № 2585613, Российская Федерация, 2016, бюл. № 15.
  • Акционерное общество «Объединенная ракетно-космическая корпорация». Список продукции. Датчик суммарного теплового потока ФОА 020 [Электронный ресурс]. URL: https://www.rosorkk.ru/catalog/preobrazovateli-sistemy-izmereniya-kontrolya-i-diagnostiki/228/ (дата обращения: 21.08.2020).
  • Крат С. А. Теплоприемник ФОА 020 как альтернативное средство контроля освещенности при тепловакуумных испытаниях космических аппаратов // Решетневские чтения : материалы ХХ Междунар. науч.-практ. конф. Красноярск. 2017. Т. 1. С. 340–342.
Еще
Статья