Первичные источники энергии когенерационных установок

Автор: Родионова Мария Алексеевна, Хрестьяновская Мария Валерьевна, Куколев Максим Игоревич

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (55), 2017 года.

Бесплатный доступ

В настоящее время топливно-энергетический комплекс России находится в кризисном состоянии, проявляющемся в нарушении снабжения топливом, электрической и тепловой энергией отдельных регионов и потребителей. Одним из наиболее перспективных решений данной проблемы является развитие малой энергетики. Большим потенциалом здесь обладает когенерация - процесс совместной выработки электрической и тепловой энергии. Когенерационная установка (КГУ) является оборудованием с высоким коэффициентом полезного действия (до 95%), позволяющим значительно повысить эффективность использования топлива, снизить вредные выбросы в атмосферу и уменьшить затраты на передачу электроэнергии. В качестве первичных источников энергии (первичных двигателей) на когенерационных установках применяются газопоршневые двигатели, газовые и паровые турбины, двигатели Стирлинга и топливные элементы. В статье рассмотрены принцип действия, диапазон мощностей, электрический, тепловой и общий коэффициенты полезного действия, используемые виды топлива и выявлены достоинства и недостатки каждой из перечисленных когенерационных технологий

Еще

Тонкостенные оцинкованные стальные профили, термопрофиль, коррозия, испытания на коррозию, лакокрасочное защитное покрытие

Короткий адрес: https://sciup.org/14322391

IDR: 14322391   |   DOI: 10.18720/CUBS.55.4

Список литературы Первичные источники энергии когенерационных установок

  • Gudkov S.A., Lebedeva E.A. Kogeneratsia, ispol'zovanie kogeneracionnyh ustanovok . IV international student electronic scientific conference "Student international forum". 2012. (rus)
  • Pradeep Varma G.V., Srinivas T. Design and analysis of a cogeneration plant using heat recovery of a cement factory. Case Studies in Thermal Engineering. 2014. Vol. 5. Pp. 24-31. Available online: http://dx.doi.o DOI: rg/10.1016/j.csite.2014.12.002
  • TEDOM. About cogeneration: How does cogeneration work . URL: http://cogeneration.tedom.com/(date of access: 13.03.2017)
  • WSE Technologies. WSE Cogeneration . URL: www.wsetech.com (date of access: 13.03.2017)
  • Barkov V.M. Kogeneratornye tekhnologii: vozmozhnosti i perspektivy . "EHSKO" electronic journal of energy service company "Ecological systems". 2004. Vol.7. (rus)
  • Kogeneratsia. Ru. O kogeneracii, maloj ehnergetike i stroitel'stve teplovyh ehlektrostancij . . URL: http://cogeneration.ru/. (rus) (date of access: 13.03.2017)
  • Zamotorin R.V. Malye teploehlektrocentrali -porshnevye ili turbinnye . Energy saving in the Saratov region. 2001. Vol. 2. (rus)
  • Kogeneratsia. Gazoporshnevye ustanovki s utilizaciej teplovoj ehnergii . EHnergosvet. 2009 Vol. 5. No. 5. Pp. 20-22. (rus).
  • Masters G.M. Renewable and efficient electric power systems. 2004. 676 p.
  • Amov G. A Survey of small-scale cogeneration technologies for military applications. DRDC Atlantic TM 2009-072. Technical memorandum. 2009. 64 p.
  • Jacobs J.A. III, Schnider M. Cogeneration application considerations. 2009. 48 p.
  • Krimse C.J.W. et al. A two-phase single reciprocating-piston heat conversion engine: Non-linear dynamic modelling. Appl Energy. 2016. Available online: http://dx.doi.o DOI: rg/10.1016/j.apenergy.2016.05.140
  • Solanki R., Mathie R., Galindo A., Markides C.N. Modelling of a two-phase thermofluidic oscillator for low-grade heat utilisation: Accounting for irreversible thermal losses. Appl Energy. 2013. Vol. 106. Pp. 337-354.
  • Markides C.N., Osuolale A., Solanki R., Stan G.-BV. Nonlinear heat transfer processes in a two-phase thermofluidic oscillator. Appl Energy. 2013. Vol. 104. Pp. 958-977.
  • Solanki R., Galindo A., Markides C.N. Dynamic modelling of a two-phase thermofluidic oscillator for efficient low grade heat utilization: Effect of fluid inertia. Appl Energy. 2012. Vol. 89. No. 1. Pp. 156-163.
  • Solanki R., Galindo A., Markides C.N. The role of heat exchange on the behaviour of an oscillatory two-phase low-grade heat engine. Appl Therm Eng. 2013. Vol. 53. No. 2. Pp. 177-187.
  • Taleb A.I, Timmer M., Elshazly M.Y., Samoilov A., Kirikkov V.A., Markides C.N. A single-reciprocating-piston two-phase thermofluidic prime-mover. Energy. 2016. Vol. 140. Pp. 250-265.
  • Oyewunmi O.A., Kirmse C.J.W., Haslam A.J., Müller E.A., Markides C.N. Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston. http://dx.doi.o. Appl Energy. 2016. Available online: DOI: rg/10.1016/j.apenergy.2016.05.008
  • Sokolov M. YU., Hryashchev YU. E. Primenenie gazoporshnevogo dvigatelya v kogeneracionnoj ustanovke dlya uvelicheniya ehnergoehffektivnosti . History and prospects of transport development in the North of Russia. 2011. Vol. 1. Pp. 117-120. (rus)
  • Burcev N.V. Razrabotka sistemy upravleniya gazovym dvigatelem vnutrennego sgoraniya na osnove algoritmov adaptivnogo upravleniya . 2010. 182 p. (rus)
  • Genkin K.I. Gazovye dvigateli . 1977. 196 p. (rus)
  • Lenin I.M., Malashkin O.M., Kostrov A.V. Sistemy toplivopodachi avtomobil'nyh i traktornyh dvigatelej . 1976. 287 p. (rus)
  • Glushenkov M., Sprenkeler M., Kronberg A., Kirillov V. Single-piston alternative to Stirling engines. Appl Energy. 2012. Vol. 97. Pp. 743-748.
  • Srinivas T.,Reddy B.V.,Hybrid solar-biomass power plant without tenergy storage,Case Stud.Therm Eng. 2014. Vol. 2(C) Pp. 75-81.
  • Ipatov A.A., Khripach N.A., Lezhnev L.YU., Papkin B.A., Ivanov D.A. Razrabotka ehlementov avtonomnoj kogeneracionnoj ustanovki, rabotayushchej na biotoplive . NAMI. 2009. Vol. 242. Pp. 96-104.
  • Coronado Ch.R., Yoshioka J.T., Silveira J.L. Electricity, hot and cold water production from biomass. Energetic and economical analysis of thr compact system of cogeneration run with woodgas from a small downdraft gasifier. Renewable Energy. 2011. Vol. 36. Pp. 1861-1868.
  • Arauzo J. Downdraft reactors. In: meeting on biomass of gasification. Madrid, Spain. 1998.
  • Hellwig M. Basic of the combustion of wood and straw. In: Energy from biomass conference. EEC/Elsevier. 1982. Pp. 793-798.
  • Sala L.J.M. Cogeneration: thermodynamics, technological and economical aspects. 1994.
  • Boehm R.F. Design analysis of thermal system. 1987. 266 p.
  • Mckendry P. Energy production from biomass (Part iii): gasification technologies. Bioresource Technology. 2002. Vol. 83. Pp. 55-63.
  • Kunickis M., Balodis M., Sarma U., Cers A., Linkevics O. Efficien use of cogeneration and fuel diversification. Latvian Journal of Physics and Technical Sciences. 2015. Vol. 6. Pp. 38-47.
  • Loo S., Koppejan J. The handbook of biomass combustion and co-firing. 2009. 426 p.
  • Perna A., Minutillo M., Cicconardi S.P., Janelli E., Scarfogliero S. Conventional and advanced biomass gasification power plants designed for cogeneration purpose. Energy Procedia. 2015. Vol. 82. Pp. 687-694.
  • Wang Jiang-Jiang, Yang Kun, Xu Zi-Long, Fu Chao. Energy and exergy analyses of an integrated CCHP system with biomass air gasification. Appl Energy. 2015. Vol. 142. Pp. 317-327.
  • Dong L., Liu H., Riffat S. Development of small-scale and micro-scale biomass-fuelled CHP systems -A literature review. Appl Therm Energy. 2009. Vol. 29. No. 11-12. Pp. 2119-2126.
  • Ahrenfeldt J., Thomsen T.P., Henriksen U., Clausen L.R. Biomass gasification cogeneration-A review of state of the art technology and near future perspectives. Appl Therm Energy. 2013. Vol. 50. No. 2. Pp. 1407-1417.
  • Bang-Møller C., Rokni M., Elmegaard B., Ahrenfeldt J., Henriksen U.B. Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells. Energy. 2013. Vol. 58. Pp. 527-537.
  • Resource Dynamic Corporation. (1999). Industrial Application for Micropower: A Market Assessment. U.S. Department of Energy, Office of Industrial technologies and Oak Ridge National Laboratories.
  • CHP -Cogeneration Power. RENAC AG. 74 p. . URL: http://www.renac.de/en/home.html (date of access: 13.03.2017).
  • Catalog of CHP Technologies. Section 4. Technology Characterization -Steam Turbines. 2015. 21 p.
  • Gambini M., Vellini M. High efficiency cogeneration: performance assessment of industrial cogeneration power plants. Energy Procedia. 2014. Vol. 45. Pp. 1255-1264.
  • Gambini M., Vellini M. High efficiency cogeneration: electricity cogeneration in CHP Plants. Energy Procedia. 2015. Vol. 81. Pp. 430-439.
  • Bang-Møller C., Rokni M. Thermodynamic performance study of biomass gasification, solid oxide fuel cell and micro gas turbine hybrid systems. Energ Convers Manage. 2010. Vol. 51. No. 11. Pp. 2330-2339.
  • Frida L.E., Panoupulos K.D., Karakas E. Integrated Combined Heat and Power with Biomass Gasification and SOFC-micro Gas Turbine. In CHP with Biomass Gasification and MGT, VGB PowerTech. 2008. Vol. 4. Pp. 66-74.
  • Cocco D., Deiana P., Cau G. Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers. Energy. 2006. Vol. 31. Pp.1459-1471.
  • Micro gas turbines Capstone . URL: http://www.capstone.ru/(date of access: 13.03.2017).
  • Basrawi F., Ibrahim H., Yamada T. Optimal unit sizing of biogas-fuelled micro gas turbine cogeneration systems in a sewage treatment plant. Energy Procedia. 2015. Vol. 75. Pp. 1052-1058.
  • Aikaterini F., Anders N.A., David T. Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK. Energy. 2008. Vol. 33. Pp. 1659-1670.
  • Leandro G., Aristide F.M. Micro gas turbine thermodynamic and economic analysis up to 500 kWe size. Applied Energy. 2011. Vol. 88. Pp. 4795-4802.
  • Sepehr S, Moslem RA. Estimating the power and number of microturbines in small-scale combined heat and power systems. Applied Energy. 2009. Vol. 86. Pp. 895-903.
  • Firdaus Basrawi, Thamir K. Ibrahim, Khairul Habib, Takanobu Yamada, Daing Mohamad Nafiz Daing Idris. Techno-economic performance of biogas-fueled micro gas turbine cogeneration systems in sewage treatment plants: Effect of prime mover generation capacity. Energy. 2017. Vol. 124. Pp. 238-248.
  • Firdaus B, Takanobu Y, Kimio N, Hideaki K. Analysis of the performances of biogas-fuelled micro gas turbine cogeneration systems (MGT-CGSs) in middle-and small-scale sewage treatment plants: Comparison of performances and optimization of MGTs with various electrical power outputs. Energy. 2012. Vol. 38. Pp. 291-304.
  • Aboumahboub T., Schaber K., Tzscheutschler P., Hamacher T. Optimization of the Utilization of Renewable Energy Sources in the Electricity Sector, Proceedings of the 5th IASME/WSEAS International Conference on ENERGY &ENVIRONMENT. 2010. Vol. 23-25. Pp 196 -204.
  • Brandhorst Jr. H. W. Free-Piston Stirling Convertor Technology for Military and Space Applications. Workshop on Power & Energy, New Delhi. 2007.
  • Chicco G., Mancarella P. Performance Evaluation of Cogeneration Systems: an Approach Based on Incremental Indicators. Proceedings of the 6th WSEAS International Conference on Power Systems, Lisbon, Portugal. 2006. Pp 34 -39.
  • Kaarsberg T. Combined Heat and Power for Saving Energy and Carbon in Residential Buildings. Building Industry Trends-10. Pp. 149-159.
  • Monteiro E., Moreira N. A., Ferreira S. Planning of micro-combined heat and power systems in the Portuguese scenario. Applied Energy. 2009. Vol. 86. Pp. 290-298.
  • Kirillov N. G. Power Units Based on Stirling Engines: New Technologies Based on Alternative Fuels. Russian Engineering Research. 2008. Vol. 28. No.2. Pp. 104-110.
  • Integrated micro CCHP -Stirling Engine based on renewable energy sources for the isolated residential consumers from South-East region of Romania. Project RO-0054. 2009.
  • Onovwiona H.I. Residential Cogeneration Systems: Review of the Current Technology. Renewable and Sustainable Energy Reviews. 2006. Vol. 10, Pp. 389-431.
  • Patrascu, R. Comparative analysis of different combined heat and power generation: fuel cells, gas turbine, internal combustion engine, 4th IASME/WSEAS International Conference on ENERGY, ENVIRONMENT, ECOSYSTEMS and SUSTAINABLE DEVELOPMENT (EEESD'08), Algarve, Portugal, June 11-13. 2008. Pp 27-31.
  • Scarpete D., Uzuneanu K. Stirling Engines in Generating Heat and Electricity for micro -CHP Systems. WSEAS Int. Conference, Venice. 2011. Pp. 149-154 . Syst. requirements: AdobeAcrobatReader. URL: http://www.wseas.us/elibrary/conferences/2011/Venice/MUCOM/MUCOM-23.pdf (date of access: 13.03.2017).
  • Urieli I., Berchowitz D.M. Stirling Cycle Engine Analysis. 1984. 274 p.
  • Wu D. W., Wang R. Z. Combined Cooling, Heating and Power: A review. Progress in Energy and Combustion Science. 2006. Vol. 32. Pp. 459-495.
  • Scollo L., Valdez P., Baron J. Design and construction of a Stirling engine prototype. International Journal of Hydrogen Energy. 2008. Vol. 33, Pp. 3506-3510.
  • Valenti G., Campanari S., Silva P., Fergnani N, Ravidà A., G. Marcoberardino Di., Macchi E. Modeling and testing of a micro-cogeneration Stirling engine under diverse conditions of the working fluid. Energy Procedia. 2014. Vol. 61. Pp. 484 -487.
  • Pivec G., Eisner l., Kralj D. Optimization Supplying of Electricity and Heat Energy -An Aspect of Sustainability in the Hospital Maribor. Proceedings of the WSEAS Int. Conference on Energy Planning, Energy Saving, Environmental Education, Arcachon, France, October 14 -16. 2007. Pp 111 -115
  • Valenti G, Silva P, Fergnani N, Marcoberardino G. Di., Campanari S., Macchi E. Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia. 2014. Vol. 45. Pp.1235-44 DOI: 10.1016/j.egypro.2014.01.129
  • Cotana F., Messineo A., Petrozzi A., Coccia V., Cavalaglio G., Aquino A. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste. Sustainability. 2014. Vol. 6. Pp. 5714-5729 DOI: 10.3390/su6095714
  • Dong L.; Liu H.; Riffat S. Development of Small-Scale and Micro-Scale Biomass-Fuelled CHP Systems-A literature review. Appl. Therm. Eng. 2009. Vol. 29. Pp. 2119-2126.
  • Maraver D.; Sin A.; Royo J.; Sebastian F. Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Appl. Energy. 2013. Vol. 102. Pp.1303-1313.
  • Ferreira A.C.M.; Nunes L.M.; Martins L.A.S.B.; Teixeira F.C.F.S. A Review of Stirling Engine Technologies applied to micro-Cogeneration System. In Proceedings of ECOS 2012-The 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Perugia, Italy, 26-29 June. 2012.
  • Formosa F.; Despesse G. Analytical model for Stirling cycle machine design. Energy Convers. Manag. 2010. Vol. 51. Pp. 1855-1863.
  • Stirling BioPower Web Site . URL: http://www.sp-usa.com/faq/(date of access: 13.03.2017).
  • Obernberger I.; Carlsen H.; Biedermann F. State-of-the-Art and Future Developments Regarding Small-Scale Biomass CHP Systems with a Special Focus on ORC and Stirling Engine Technologies . Syst. requirements: AdobeAcrobatReader. URL: http://turboden.eu/en/public/downloads/small_scale_CHP_technologies.pdf (date of access: 13.03.2017)
  • Podesser E. Electricity production in rural villages with a biomass Stirling Engine. Renew. Energy. 1999. Vol. 16. Pp. 1049-1052.
  • Thombare D.G.; Verma S.K. Technological development in the Stirling cycle engines. Renew. Sustain. Energy Rev. 2008. Vol. 12. Pp. 1-38.
  • Kongtragool B.; Wongwises S. A Review Of Solar-Powered Stirling Engines and Low Temperature Differential Stirling Engines. Renew. Sustain. Energy Rev. 2003. Vol. 7. Pp. 131-154.
  • Jai-Houng L. Biomass power generation through direct integration of updraft gasifier and Stirling engine combustion system. Adv. Mech. Eng. 2010 DOI: 10.1155/2010/256746
  • SOLO Stirling 161. ProEcoPolyNet. Fact Sheet . Syst. requirements: AdobeAcrobatReader. http://www.buildup.eu/sites/default/files/content/SOLO%20Stirling%20161.pdf (date of access: 13.03.2017). URL:
  • Istoriya razvitiya dvigatelej Stirlinga V160 I Solo Stirling 161 . Lundholm, Gun. Paper for ISEC. 1999.
  • Baumüller A., Schmieder E. EHkspluatacionnye ispytaniya i vnedrenie na rynok kogeneracionnoj sistemy s dvigatelyami Stirlinga i solnechnogo modulya . ISEC. 1999.
  • Breusov V.P., Kukolev M.I. Serijnoe proizvodstvo dvigatelej Stirlinga . Academy of Energy. 2010. Vol. 3. No. 35. Pp.58-61. (rus)
  • Breusov V.P., Kukolev M.I. Nekotorye razrabotki dvigatelej Stirlinga za rubezhom . Academy of Energy. 2010. Vol. 5. No. 37. Pp.72-76. (rus)
  • Theo Elmer, Mark Worall, Shenyi Wu, Saffa B. Riffat. Fuel cell technology for domestic built environment applications: State of-the-art review. Renew. Sustain. Energy Rev. 2015. Vol. 42. Pp. 913-931.
  • Harikishan R. Ellamla, Iain Staffell, Piotr Bujlo, Bruno G. Pollet, Sivakumar Pasupathi. Current status of fuel cell based combined heat and power systems for residential sector. Journal of Power Sources. 2015. Vol. 293. Pp. 312-328.
  • Campanari S, Valenti G, Macchi E., Lozza G., Ravidà N., Lazzari. Development of a microcogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells. Applied Thermal Engineering. In Press. 2014 DOI: 10.1016/j.applthermaleng.2013.10.067
  • Pilatowsky I., Romero R.J., Isaza C.A., Gamboa S.A. Cogeneration Fuel Call-Sorpiton Air Conditioning Systems. 154 p. Available online: http://www.springer.com/978-1-84996-027-4.
  • Kabza A. Just another Fuel Cell Formulary. 2015. 84 p.
  • Halliday J., Ruddell A., Powell J., Peters M. Fuel cells: providing heat and power in the urban environment. Technical Report 32. 2005. 107 p.
  • Sepehr Sanaye, Mehdi Aghaei Meybodi, Shahabeddin Shokrollahi. Selecting the prime movers and nominal powers in combined heat and power systems. Applied Thermal Engineering. 2008. Vol. 28. Pp. 1177-1188.
  • Houssein Al Moussawi, Farouk Fardoun, Hasna Louahlia. Selection based on differences between cogeneration and trigeneration in various prime mover technologies. Renew. Sustain. Energy Rev. 2017. Vol. 74. Pp. 491-511.
  • S. Murugan, Bohumil Horák. A review of micro combined heat and power systems for residential applications. Renew. Sustain. Energy Rev. 2016. Vol. 64. Pp. 144-162.
  • Weiland P. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 2010. Vol. 85. Pp. 849-860.
  • Algieri A.; Morrone P. Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Appl. Therm. Eng. 2013 DOI: 10.1016/j.applthermaleng.2013.11.024
  • Xu J.; Sui J.; Li B.; Yang M. Research, development and the prospect of combined cooling, heating, and power systems. Energy. 2010. Vol. 35. Pp. 4361-4367.
  • Denntice d'Accacia M.; Sasso M.; Sibilio S.; Vanoli L. Micro-Combined Heat and Power in Residential and Light Commercial Applications. Appl. Therm. Eng. 2003. Vol. 23. Pp. 1247-1259.
Еще
Статья обзорная